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Classical Domain
How to study QM?
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Classically the state of a particle is defined by (x,p) and the dynamics is given by Hamilton’s equations

What is a quantum mechanical state?

Coordinate and momentum is not complete in QM, needs a probabilistic predictions.

The wave function associated with the particle can represent its state and the
dynamics would be given by Schrodinger equation.

However, wave function is a complex quantity!
Need to calculate the probability and the expectation values.

Concept of Phase Space and Dynamical variables Q(x, p)

Momentum ,Kinetic energy, Angular Momentum ,etc

Different approaches F = Ma

Lagrangian and Hamiltonian dynamics 

Hamiltonian Approach 
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The Schrodinger equation:
Given the initial state ψ(x,0), the Schrodinger equation determines the states ψ(x,t)
for all future time

Hψ=

where H is the Hamiltonian of the system.
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But what exactly is this "wave function", and what does it mean? After all, a particle,
by its nature, is localized at a point, whereas the wave function is spread out in space
(it's a function of x, for any given time t). How can such an object be said to describe
the state of a particle?

Lets go Quantum

Classical Approach breaks down- Uncertainty Principle comes in 

Wave Particle duality 

Wave function and Schrodinger equation 
Born's statistical interpretation of          :     

gives the probability of finding the particle between x and +dx, at time t or, 
more precisely, 

A typical wave function. The particle would be relatively likely to be found near A, and unlikely
to be found near B. The shaded area represents the probability of finding the particle in the
range dx.

The probability P (x,t) of finding the particle in the region lying between x and x+dx at 
the time t, is given by the squared amplitude  P(x, t) dx = 
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How does Probability evolve with time Suppose we have normalized the wave function at time t = 0. How do we know that it 
will stay normalized, as time goes on and                evolves?

Does ψ remain normalized forever?

[Note that the integral is a function only of t,
but the integrand is a function of x as well as t.] 

By the product rule, 
The Schrodinger equation and its complex conjugate are

and

Since must go to zero as x goes to (±) infinity-otherwise the wave function would
not be normalizable. Thus, if the wave function is normalized at t = 0, it stays
normalized for all future time.

So,

Then,

The Schrodinger equation has the property that it automatically preserves the
normalization of the wave function--without this crucial feature the Schrodinger
equation would be incompatible with the statistical interpretation.

Is the probability current.
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How does Probability evolve with time 

Thus Schrodinger equation guaranties if a wave function is 
normalised at t=0, it will stay normalised for all time  
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Expectation values and Operators

Measurements in Quantum Mechanics 

Momentum expectation p = mv = m
dx
dt

< x > = ∫
∞

∞
x |Ψ(x, t) |2 dx

< p > =
d < x >

dt

< p > =
d
dt ∫

∞

∞
Ψ(x, t)*xΨ(x, t)dx

Momentum expectation:
Classically: Quantum mechanically, it is <p>

Let us try:
d<x>/dt is the velocity of the
expectation value of x, not the
velocity of the particle.

Note that there is no dx/dt under the integral sign. The only quantity that varies with
time is ψ(x, t), and it is this variation that gives rise to a change in <x> with time. Use
the Schrodinger equation and its complex conjugate to evaluate the above and wethe Schrodinger equation and its complex conjugate to evaluate the above and we
have

Now

This means that the integrand has the form 
=
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This means that the integrand has the form 
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Because the wave functions vanish at infinity, the first term does not contribute, and
the integral gives

This suggests that the momentum be represented by the differential operator 

p̂ i
x

∂
→−

∂
!

As the position expectation  was represented by 
*x x dxψ ψ

+∞

−∞

= ∫

To calculate expectation values, operate the given operator on the wave function,
have a product with the complex conjugate of the wave function and integrate.

x̂ x→and the position operator be represented by 

What about other dynamical variables? 

* *ˆ ˆandp p dx x x dxψ ψ ψ ψ= =∫ ∫

Expectation values and Operators
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Expectation of other dynamical variables
To calculate the expectation value of any dynamical quantity, first express in terms of
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but does not occur for motion in one dimension. 
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Chapter 3

Postulates of Quantum Mechanics

3.1 Introduction
The formalism of quantum mechanics is based on a number of postulates. These postulates are
in turn based on a wide range of experimental observations; the underlying physical ideas of
these experimental observations have been briefly mentioned in Chapter 1. In this chapter we
present a formal discussion of these postulates, and how they can be used to extract quantitative
information about microphysical systems.
These postulates cannot be derived; they result from experiment. They represent the mini-

mal set of assumptions needed to develop the theory of quantum mechanics. But how does one
find out about the validity of these postulates? Their validity cannot be determined directly;
only an indirect inferential statement is possible. For this, one has to turn to the theory built
upon these postulates: if the theory works, the postulates will be valid; otherwise they will
make no sense. Quantum theory not only works, but works extremely well, and this represents
its experimental justification. It has a very penetrating qualitative as well as quantitative pre-
diction power; this prediction power has been verified by a rich collection of experiments. So
the accurate prediction power of quantum theory gives irrefutable evidence to the validity of
the postulates upon which the theory is built.

3.2 The Basic Postulates of Quantum Mechanics
According to classical mechanics, the state of a particle is specified, at any time t , by two fun-
damental dynamical variables: the position ;r�t� and the momentum ;p�t�. Any other physical
quantity, relevant to the system, can be calculated in terms of these two dynamical variables.
In addition, knowing these variables at a time t , we can predict, using for instance Hamilton’s
equations dx�dt � "H�"p and dp�dt � �"H�"x , the values of these variables at any later
time t ).
The quantum mechanical counterparts to these ideas are specified by postulates, which

enable us to understand:

� how a quantum state is described mathematically at a given time t ,

� how to calculate the various physical quantities from this quantum state, and
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� knowing the system’s state at a time t , how to find the state at any later time t ); that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system
The state of any physical system is specified, at each time t , by a state vector �O�t�O in a Hilbert
space H; �O�t�O contains (and serves as the basis to extract) all the needed information about
the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators
To every physically measurable quantity A, called an observable or dynamical variable, there
corresponds a linear Hermitian operator 
A whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators
The measurement of an observable A may be represented formally by the action of 
A on a state
vector �O�t�O. The only possible result of such a measurement is one of the eigenvalues an
(which are real) of the operator 
A. If the result of a measurement of A on a state �O�t�O is an ,
the state of the system immediately after the measurement changes to �OnO:


A�O�t�O � an�OnO� (3.1)

where an � NOn�O�t�O. Note: an is the component of �O�t�O when projected1 onto the eigen-
vector �OnO.

Postulate 4: Probabilistic outcome of measurements

� Discrete spectra: When measuring an observable A of a system in a state �OO, the proba-
bility of obtaining one of the nondegenerate eigenvalues an of the corresponding operator

A is given by

Pn�an� �
�NOn�OO�2

NO�OO
�
�an�2

NO �OO
� (3.2)

where �OnO is the eigenstate of 
Awith eigenvalue an . If the eigenvalue an ism-degenerate,
Pn becomes

Pn�an� �
3m
j�1 �NO

j
n �OO�2

NO �OO
�
3m
j�1 �a

� j�
n �2

NO �OO
� (3.3)

The act of measurement changes the state of the system from �OO to �OnO. If the sys-
tem is already in an eigenstate �OnO of 
A, a measurement of A yields with certainty the
corresponding eigenvalue an : 
A�OnO � an�OnO.

� Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of 
A yields a value be-
tween a and a � da on a system which is initially in a state �OO:

dP�a�
da

�
�O�a��2

NO �OO
�

�O�a��2
5�*
�* �O�a)��2da)

� (3.4)

for instance, the probability density for finding a particle between x and x � dx is given
by dP�x��dx � �O�x��2�NO �OO.

1To see this, we need only to expand �O�t�O in terms of the eigenvectors of 
A which form a complete basis: �O�t�O �3
n �OnONOn �O�t�O �

3
n an �OnO.
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(b) The number of systems that will be found in the state �M1O is

N1 � 810� P1 �
810

3
� 270� (3.16)

Likewise, the number of systems that will be found in states �M2O and �M3O are given, respec-
tively, by

N2 � 810� P2 �
810� 4
9

� 360� N3 � 810� P3 �
810� 2
9

� 180� (3.17)

3.4 Observables and Operators
An observable is a dynamical variable that can be measured; the dynamical variables encoun-
tered most in classical mechanics are the position, linear momentum, angular momentum, and
energy. How do we mathematically represent these and other variables in quantum mechanics?
According to the second postulate, a Hermitian operator is associated with every physical

observable. In the preceding chapter, we have seen that the position representation of the
linear momentum operator is given in one-dimensional space by 
P � �i �h"�"x and in three-
dimensional space by 
;P � �i �h ;V.
In general, any function, f �;r� ;p�, which depends on the position and momentum variables,

;r and ;p, can be "quantized" or made into a function of operators by replacing ;r and ;p with their
corresponding operators:

f �;r� ;p� �� F� 
;R� 
;P� � f � 
;R��i �h ;V�� (3.18)

or f �x� p�� F� 
X � �i �h"�"x�. For instance, the operator corresponding to the Hamiltonian

H �
1
2m

;p 2 � V �;r � t� (3.19)

is given in the position representation by


H � � �
h2

2m
V2 � V � 
;R� t�� (3.20)

where V2 is the Laplacian operator; it is given in Cartesian coordinates by: V2 � "2�"x2 �
"2�"y2 � "2�"z2.
Since the momentum operator 
;P is Hermitian, and if the potential V � 
;R� t� is a real function,

the Hamiltonian (3.19) is Hermitian. We saw in Chapter 2 that the eigenvalues of Hermitian
operators are real. Hence, the spectrum of the Hamiltonian, which consists of the entire set
of its eigenvalues, is real. This spectrum can be discrete, continuous, or a mixture of both. In
the case of bound states, the Hamiltonian has a discrete spectrum of values and a continuous
spectrum for unbound states. In general, an operator will have bound or unbound spectra in the
same manner that the corresponding classical variable has bound or unbound orbits. As for 
;R
and 
;P , they have continuous spectra, since r and p may take a continuum of values.
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of its eigenvalues, is real. This spectrum can be discrete, continuous, or a mixture of both. In
the case of bound states, the Hamiltonian has a discrete spectrum of values and a continuous
spectrum for unbound states. In general, an operator will have bound or unbound spectra in the
same manner that the corresponding classical variable has bound or unbound orbits. As for 
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and 
;P , they have continuous spectra, since r and p may take a continuum of values.
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where

p2
op C�x� �

6
i
 
�
�x 6 6i  

�
�xC�x� 7 � �62 

�2C

�x2

In classical mechanics, the total energy written in terms of the position and 
momentum variables is called the Hamiltonian function H � p2�2m � V . If we 
replace the momentum by the momentum operator pop and note that V � V(x), we 
obtain the Hamiltonian operator Hop:

 Hop �
p2

op

2m
� V�x� 6-51

The time-independent Schrödinger equation can then be written

 HopC � EC 6-52

The advantage of writing the Schrödinger equation in this formal way is that it 
allows for easy generalization to more complicated problems such as those with 
several particles moving in three dimensions. We simply write the total energy 
of the system in terms of position and momentum and replace the momentum vari-
ables by the appropriate operators to obtain the Hamiltonian operator for the 
system.

Table 6-1 summarizes the several operators representing physical quantities 
that we have discussed thus far and includes a few more that we will encounter 
later on.

 Table 6-1 Some quantum-mechanical operators

Symbol Physical quantity Operator

f(x)  Any function of x—the position x,
the potential energy V(x), etc.

f(x)

px x component of momentum
6
i
 
�
�x

py y component of momentum
6
i
 
�
�y

pz z component of momentum
6
i
 
�
�z

E Hamiltonian (time independent)
p2

op

2m
� V�x�

E Hamiltonian (time dependent) i6 
�
�t

Ek Kinetic energy �  
62

2m
 
�2

�x2

Lz z component of angular momentum � i6 
�
�F
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 �p� � )
� @

� @

#
4 6
i
 
�
�x5# dx 6-48

Similarly, �p2� can be found from�p2� � )
� @

� @

#
4 6
i
 
�
�x 5 4 6i  

�
�x5# dx

Notice that in computing the expectation value, the operator representing the physical 
quantity operates on #(x, t), not on #*(x, t); that is, its correct position in the integral 
is between #* and #. This is not important to the outcome when the operator is sim-
ply some f (x), but it is critical when the operator includes a differentiation, as in the 
case of the momentum operator. Note that ��p2� is simply 2mE since, for the infinite 

square well, E � p2�2m. The quantity 4 6
i
 
�
�x 5 , which operates on the wave function 

in Equation 6-48, is called the momentum operator pop:

 pop �
6
i
 
�
�x 6-49

EXAMPLE 6-5 Expectation Values for p and p2  Find ��p� and ��p2� for the 
ground-state wave function of the infinite square well. (Before we calculate them, 
what do you think the results will be?)

SOLUTION
We can ignore the time dependence of #, in which case we have

 �p� � )
L

0

4� 2
L

 sin 
nx
L
5 4 6

i
 
�
�x5 4� 2

L
 sin 

nx
L
5  dx

 �
6
i
 
2
L

 
P

L )
L

0

 sin 
Px
L

 cos 
Px
L

 dx � 0

The particle is equally as likely to be moving in the �x as in the �x direction, so its 
average momentum is zero.

Similarly, since

 
6
i
 
�
�x4 6i  

�
�x5C � �62 

�2C

�x2 � �624 �  
P2

L2� 2
L

 sin 
Px
L
5

 � �  
62P2

L2  C

we have �p2� �
62P2

L2 )
L

0

C
C dx �
62P2

L2

The time-independent Schrödinger equation (Equation 6-18) can be written conveniently 
in terms of pop:

 4 1
2m
5p2

op C�x� � V�x�C�x� � EC�x� 6-50
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