




















































1.1 INTRODUCTION
The electron theory of solids explains the structures and properties of solids

through their electronic structure.  This theory is applicable to all solids both metals
and non metals.  This theory also explains the bending in solids behavior of conductors
and insulators, electrical and thermal conductivities of solids, elasticity and repulsive
forces in solids etc,.. The theory has been developed in three main stages.

1.1.1 Classical free electron theory

This theory was developed by Drude and Lorentz.  According to this  theory, a
metal consists of electrons which are free to move about in the crystal molecules of a
gas it contains mutual repulsion between electrons is ignored and hence potential energy
is taken as zero.  Therefore the total energy of the electron is equal to its kinetic
energy.

1.1.2 Quantum free electron theory

Classical free electron theory could not explain many physical properties.  In
classical free electron theory, we use Maxwell-Boltzman statics which permits all free
electrons to gain energy.  In Somerfield developed a new theory, in which he retained
some of the features of classical free electron theory included quantum mechanical
concepts and Fermi-Dirac statistics to the free electrons in the metals.  This theory is
called quantum free electron theory.  Quantum free electron theory permits only a few
electrons to gain energy.
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1.2 ENGINEERING PHYSICS - II

1.1.3 Zone theory (or) Band theory

Bloch developed the theory in which the electrons move in a periodic field
provided by the Lattice concept of holes, origin of Band gap and effective mass of
electrons are the special features of this theory of solids.  This theory also explains the
mechanism of super conductivity based on band theory.

1.2 ASSUMPTIONS (POSTULATES) OF CLASSICAL FREE
ELECTRON THEORY

1. A Solid metal has nucleus with revolving electrons.  The electrons move freely
like molecules in a gas.

2. The free electrons move in a uniform potential field due to the ions fixed in
the lattice.

3. In the absence of electric field (E=0), the free electrons move in random
directions and collide with each other.  During this collision no loss of energy
is observes since the collisions are elastic as shown in figure.

4. When the presence of electric field (E 0 ) the free electrons are accelerated
in the direction opposite to the direction of applied electric field, as shown in
figure.

            

Fig1.1 Absence of electric field (E= 0)    Presence of electric field ( E 0 )

5. Since the electrons are assumed to be perfect gas, they obey the laws of classical
theory of gases.

6. Classical free electrons in the metal obey Maxwell-Boltzmann statistics.

hp
Highlight

hp
Highlight

hp
Highlight



CONDUCTING MATERIALS 1.3

1.3 BASIC TERMS INVOLVED IN THE FREE ELECTRON
THEORY

1. Drift Velocity (Vd)
The drift velocity is defined as the average velocity acquired by the free electron

in particular direction, due to the applied electric field.

Drift Velocity =
Average distance travelled by the electron

Time taken

d
1V ms

t




2. Mobility ()
The mobility is defined as the drift velocity (Vd) acquired by the electron per

unit electric field (E).

      2 1 1dV  m V s
E

  

3. Mean free path ()
The average distance travelled by a electron between two successive collision

is called mean free path.
4. Mean collision time (c) (or) Collision time

It is the time taken by the free electron between two successive collision.

c
d

sec
V


 

5. Relaxation time ()
It is the time taken by the electron to reach equilibrium position from disturbed

position in the presence of electric field.

d
sec

V
 

l

Where l is the distance travelled by the electron. The value of relaxation time is
of the order of 10–14 sec.
6. Band gap (Eg)

Band gap is the energy difference between the minimum energy of conduction
band and the maximum energy of valence band.
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1.4 ENGINEERING PHYSICS - II

7. Current density (J)
It is defined as the current per unit area of cross section of an imaginary plane

holded normal to the direction of the flow of current in a current carrying conductor.

–2IJ A m
A



1.4 SUCCESS OR USES OF CLASSICAL FREE ELECTRON
THEORY

1. It is used to verify Ohm’s law.
2. It is used to explain electrical conductivity () and thermal conductivity of

(K) of metals.
3. It is used to derive Widemann-Franz law.
4. It is used to explain the optical properties of metal.

1.5 DRAWBACKS OF CLASSICAL FREE ELECTRON THEORY
1. It is a macroscopic theory.
2. According  to classical free electron theory, all the free electrons will absorb

energy, but the quantum free electron theory states that only few electrons
will absorb energy.

3. This theory cannot explain the Compton effect, Photo-electric effect, para-
magnetism and ferromagnetism, etc.,

4. This theory cannot explain the electrical conductivity of semiconductors and
insulators.

5. Dual nature of light radiation cannot be explained.
6. The theoretical and experimental values of specific heat and electronic specific

heat are not matched.

7. By classical theory 
K = T


 is constant for all temperature, but by quantum

theory K = T


 is not a constant for all temperatures.

8. The Lorentz number obtained by classical theory does not have good
agreement with experimental value and theoritical value, it is rectified by
quantum theory.
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CONDUCTING MATERIALS 1.5

1.6 EXPRESSION FOR ELECTRICAL CONDUCTIVITY ( )
Definition

The electrical conductivity is defined as the quantity of electricity flowing
per unit area per unit time at a constant potential gradient.

 =
2ne

m
 1 1Ohm m 

1.6.1 Expression for electrical conductivity

Fig 1.2 Moment of Electron

When an electric field (E) is applied to a conductor the free electrons are
accelerated and give rise to current (I) which flows in the direction of electric filed
flows of charges is given in terms of current density.

Let ‘n’ be the number of electrons per unit volume and ‘e’ be the charge of the
electrons.

The current flowing through a conductor per unit area in unit time (current density)
is given by

J = dnV ( e)

J = – dnV (e) ... (1)

The negative sign indicates that the direction of current is in opposite direction
to the movement of electron.

Due to the applied electric field, the electrons acquire an acceleration ‘a’ can be
given by

Accelaration (a) = dDrift Velocity (V )
Relaxation time ( )
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1.6 ENGINEERING PHYSICS - II

a = dV


Vd = a ... (2)
When an electric field of strength (E) is applied to the conductor, the force

experienced by the free electrons in given by
F = – eE ... (3)

From Newton’s second Law of motion, the force acquired by the electrons can
be written as

F = ma ... (4)
Comparing equation (3) & (4)

–eE = ma

a =
e E
m


... (5)

Now, substituting the value of ‘a’ from the equation (2),we get

Vd =
eE
m

 
... (6)

Substitute equation (6) in (1)

J =
eEn ( e)
m

    
 

J =
2ne E
m


... (7)

The electrical conductivity  =
J
E

 =
2ne

m


The electrical conductivity 
2ne

m


 

The electrical conductivity of a material is directly proportional to the free electron
concentration in the material.
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1.6.2 Correct expression for electrical conductivity of
conductors

By using the classical free electron theory, quantum free electron theory and
band theory of solids we can get,

The electrical conductivity, =
2ne

m*


Where m*- effective mass of free electron

 - Electrical conductivity

 - Relaxation time

n - Number of electrons

1.7 THERMAL CONDUCTIVITY (K)
Definition

The thermal conductivity is defined as the amount of heat flowing
through an unit area per unit temperature gradient.

 =
Q
dTA
dx


 
  

Wm 1 1 K 

The negative sign indicates that heat flows hot end to cold end.

Where K is the thermal conductivity of metal. Q is the amount of heat energy.
dT
dx  is the temperature gradient.

In general, the thermal conductivity of a material is due to the presence of lattice
vibrations (ie., photons and electrons).  Hence the total thermal conduction can be
written as.

Ktotal = electron photonsK K

1.7.1 Expression for thermal conductivity (K) of an electron

Consider a metal bar with two planes A and B separated by a distance ‘’
from C. Here 1T  is hot end and 2T  is cold end.  ie., 1T > 2T
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C
 



T1 T2
Direction of 
flow of heat

A B

Fig.1.3 Thermal Conductivity

Let ‘n’ be the number of conduction electrons and ‘v’ be the velocity of the
electrons. BK is the Boltzmann constant

From kinetic theory of gases

Energy of an electron at A = 21 mv
2

= B 13K T
2

... (1)

The kinetic energy of an electron at

B = 21 mv
2

= B 23K T
2

... (2)

B 1 23K (T T )The net energy
transferred from A to B 2





... (3)

Fig.1.4 moment of electron field

Let as assume that there is equal probability for the electrons to move in all the
six directions. Each electrons travels with thermal velocity ‘V’ and ‘n’ is the free electron
density then on average of 1/6 nv electron will travel in any one direction.
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No. of electrons crossing per unit area in unit time at C

=
1
6 nv ... (4)

    (Average energy transfer from A to B)The energy carried by Qthe electrons from A to B (No of electron crossin g per unit area)

 


Q = B 1 23K (T T ) 1 nv
2 6
  

 
 

Q = B 1 2
1 K (T T )nv
4

 ... (5)

We know that the thermal conductivity,

K =
Q
dTA
dx

 
 
 

The heat energy transferred  per  unit sec per unit area

Q =
dTK
dx  [A=1 unit area]

Q = 1 2K(T T )
2



... (6)

1 2   dT  T T ,  dx 2    

Comparing equations (5) and (6),

1 2K(T T )
2



= B 1 2

1 K (T T )nv
4



  Thermal conductivity  K = B
1  K nv
2



Thermal conductivity  K BK nv
K

2



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1.8 WIEDEMANN-FRANZ LAW
Statement

The ratio between the thermal conductivity (K) and electrical
conductivity (σ) of a metal is directly proportional to the absolute
temperature of the metal.

K K  T    or    LT 
 

Where  L is called Lorentz number, the value of L is 2.44 × 10–8 WK–2

(as per Quantum Mechanical value).

1.8.1 Derivation
By Classical theory, we can drive Widemann-Franz law using the expressions

for electrical and thermal conductivity of metals.

The expression for thermal conductivity

K = BK nv
2



The expression for electrical conductivity

 =
2ne

m


K


= B
2

1/ 2K nv

ne / m





K


=
2

B
2

m K v1         v
2 e

   


K


= 2 B
2

K1 mv
2 e

We know that kinetic energy of an electron

 21 mV
2

= B
3 K T
2
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K


= B
B 2

K3 K T
2 e

K


=
2

B
2

K T3
2 e

  
K
T =

2
B
2

K3
2 e

  
K L
T


   L is called Lorentz number

Thus, it is proved that the ratio of thermal conductivity and electrical conductivity
of a metal is directly propotional to the absolute temperature of the metal.

Where Lorentz number L =
2

B
2

K3
2 e

L =
 
 

223

219

3 1.38 10

2 1.6 10





 



L = 8 21.12 10 W K  

It is found that the classical value of Lorentz number is only one half of the
experimental value (2.44 × 10–8 WK–2). The discrepancy of L value is the failure of
the classical theory (Experimental and Theoretical).  This can be rectified by quantum
theory.

1.8.2 By Quantum theory

By Quantum theory the mass ‘m’ is replaced by effective mass m*

The electrical conductivity  =
2ne

m

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According to Quantum theory, the expression for thermal conductivity is modified
by considering the electron specific heat as

     K =
22

BnK T
3 m



  K


=

22
B

2

nK T
3 m

ne
m





 
 
 
 
 
 

  K


=
22

B
2

K T
3 e

 
 
  

T

  K


= LT

Where L =
22

B
2

K
3 e

 
 
 
 

L =
2 23 2

19 2
(3.14) (1.38 10 )

3 (1.6 10 )






 

L = 2.44 × 10–8 WK–2

This is gives the correct value of Lorentz number and it in good agreement with
the experiment value.

1.9 QUANTUM FREE ELECTRON THEORY
The failure of classical free electron theory paved this way for Quantum free

electron theory.  It was introduced by Sommer field in 1928.  This theory is based on
making small concepts.  This theory was proposed by making small changes in the
classical free electron theory and by retaining most of the postulates of the classical
free electron theory.
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1.9.1 Assumptions (Postulates) of Quantum free electron
theory

1. In a metal the available free electrons are fully responsible for electrical
conduction.

2. The electrons move in a constant potential inside the metal.  They cannot
come out from the metal surface have very high potential barrier.

3. Electrons have wave nature, the velocity and energy distribution of the electron
is given by Fermi-Dirac distribution function.

4. The loss of energy due to interaction of the free electron with the other free
electron.

5. Electron’s distributed in various energy levels according to Pauli Exclusion
Principle.

1.9.2 Advantages of Quantum free electron theory

1. This theory explains the specific heat capacity of materials.

2. This theory explains photo electric effect, Compton Effect and block body
radiation. etc.

3. This theory gives the correct mathematical expression for the thermal
conductivity of metals.

1.9.3 Drawbacks of Quantum free electron theory

1. This theory fails to distinguish between metal, semiconductor and Insulator.

2. It also fails to explain the positive value of Hall Co-efficient.

3. According to this theory, only two electrons are present in the Fermi level
and they are responsible for conduction which is not true.
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1.10 FERMI – DIRAC DISTRIBUTION FUNCTION
Statement

It is an expression for the distribution of electrons among the energy
levels as a function of temperature, the probability of finding an electron
in a particular energy state of energy E is given by

F(E) =

B

F

1
E E

1 exp
K T
 

  
 

Where, EF - Fermi energy (highest energy level of an electron)

KB - Boltzmann’s constant

T - Absolute temperature

1.10.1  Effect of Temperature on Fermi Function

Case 1:

  AT = F0 K and E < E

F(E) =
1 1

1 exp  (- ) 1 0


  

F(E) = 1= 100 %

It means that 100% probability for the electrons to occupy the energy level
below the Fermi energy level.

Case 2:

   AT = F0 K and E > E

F(E) =
1 1 1 0

1 exp  ( ) 1
  

   

F(E) = 0 = 0%

It means that 0% probability (electron) for the electrons to occupy the energy
level above the Fermi energy level.
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Case 3 :

FAt T   >    0 K     and     E  =  E  

F(E) =
1

1 exp  (0)  = 
1

1 1  = 
1
2  = 0.5

F(E) = 0.5 = 50%
It means that 50% probability for the electrons to occupy the Fermi energy

level.  (above Fermi energy level are empty and below Fermi energy level are filled).
At 0 K energy states above FE  are empty and below FE are filled.

           (a)At T=0K                                           (b) at T>0K
Fig.1.5 Fermi Dirac distribution function

1.10.2  Fermi level, Fermi Energy and their importance
These are defined as the highest energy level filled by the electrons in that energy

level with higher energy values.

Fermi level : The Fermi level is the highest reference energy level of
a particle at absolute zero.

Importance : It is the reference energy level which separates the filled
energy levels and vacant energy levels.

Fermi energy (EF) : The Fermi energy is the maximum energy of the quantum
state corresponding to Fermi energy level at absolute
zero.

Importance : Fermi energy determines the energy of the particle at
any temperature.
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1.11 DENSITY OF STATES
A parameter of interest in the study of conductivity of metals and semiconductors

is the density of states.

The Fermi function F(E) gives only the probability of filling up of electrons in a
given energy state.  It does not give the information about the number of electrons that
can be filled in a given energy state, to know that we should know the number of
available energy states called density of states.

Density of states is defined the as the number of energy states per unit
volume in an energy interval of a metal.  It is use to calculate the number
of charge carriers per unit volume of any solid.

N(E) dE =
Number of energy states between E and E + dE

Volume of  the metal

N(E) dE =
D(E) dE

V ... (1)

nz

dn

E
n

O

nx

ny

E+dE

Fig.1.6  Positive octant of n space

Let us constant a sphere of radius “n” in space with quantum numbers , n yn n
and zn

2n = 2 2 2
x y zn n n 

The sphere is further divided into many shells represents a particular combination
of quantum numbers and represents particular energy value.
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Therefore, the number of energy states within a sphere of radius

n = 34  n
3


Let us consider two energy values E and E + dE can be found by finding the
number of energy states between the shells of radius n and n+ dn from the origin.
Since the quantum numbers are positive integers, n values can be defined only in the
positive octant of the n – space.

The number of available energy states within the sphere of radius “n” due to one
octant.

n 
31 4   n

8 3
   

Similarly the number of available energy states within the sphere of radius n+dn
corresponding energy.

n + dn =  31 4 n + dn 
8 3
   

The number of available energy states between the shells of radius n and n + dn
(or) between the energy levels E and E + dE

D (E) dE =  3 31 4 4n + dn n
8 3 3
     

The number of available energy states between the energy interval dE

D (E) dE =  3 3 2 2 21 4 n  + dn +3n dn+3n dn – n  
8 3
   

Since the higher powers of dn is very small, dn2 and dn3 terms can be neglected.

 D (E) dE =  21 4 3n dn
8 3
   

 

D (E) dE =
2n dn
2


... (3)
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We know that the allowed energy values is

E =
2 2

2
n h
8mL

... (4)

Differentiating equation (4) with respect to ‘n’

 dE =
2

2
h 2 ndn

8mL

 ndn =
2

2
8mL  dE
2h

... (5)

From equation (4) n2 =
2

2
8mL E

h

n =
 
 

1/2

1/2

2

2

8mL E

h
... (6)

On substituting equation (6) and (5) in equation (3) we get,

D (E) dE =
n (ndn)

2


D (E) dE =
 
 

1/ 2

1/ 2

2 2

22

8mL E 8mL  dE
2 2hh


 

D (E) dE =
 
 

3/ 22
1/ 2

3/ 22

8mL
E  dE

4 h




D (E) dE =  3/2 3 1/2
3 8m L E  dE

4h


If volume of the metal, V = L3

D (E) dE =  3/2 1/2  3 8m VE dE
4h

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For unit volume of a metal,

V = 1m3

From equation (1)  N (E) dE =
D(E) dE

V

Density of States,   N (E) dE =  3/2 1/2  3 8m E dE
4h


 

Each electron energy level can accommodate two electrons as per Pauli’s
exclusion principle. (Spin up and Spin down = 2 (e) × density of states).

  N (E) dE =  2 × N(E) dE

  N (E) dE =  3/2 1/ 2
32 x 8m E  dE F(E)

4h


N (E) dE =  3/ 2 1/ 2
3 8m E  dE F(E)

2h


1.11.1Carrier concentration in metals

Let N(E) dE represents the number of filled energy states between the interval
of energy dE, normally all the energy states will not be filled

  dN = N (E) dE F(E)

  dN =  3/2 1/2
32 x 8m E  dE F(E)

4h


... (8)

The actual number of electrons in dE,  F(E) = 1

  dN =  3/ 2 1/ 2
3 8m E  dE

2h


Normally all the states are not filled states, filling of electrons is a given energy
state is given by Fermi-function F(E). Let dn represents the number of filled energy
states.

In this case of material of absolute zero the upper occupied level is EF and for
all the levels below EF, F(E)=1 (at T = 0 K the maximum energy level that can be
occupied by the electron is called Fermi energy level EF T = 0 K F(E) = 1).

Integrating equation (8) within the limits 0 to EF0
 us can get the number of energy

states of electron (N)
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N

0
dN =  

FoE
3/2 1/2

3
0

8m E  dE
2h




N =  
3/2E

3/2

EFo3/2
 3

0
8m

2h

 
 
  



N =  
Fo

3/ 2 3/ 2
3 8m E

3h


... (9)

3 / 2
F0

E =  

3

3 / 2
3Nh

8m

 
 
  

F0
E =

 

2 / 3 2 / 33 2

3 / 2
3Nh h 3N

8m8m

           
... (10)

Hence the Fermi energy of a metal depends only on the density of electrons of
that metal.

1.11.2  Average energy of an electron at 0 K

Average energy of electron

avgE = TTotal energy of the electrons at 0 K (E )
Number of energy states at 0 K (N) ... (11)

T

Total energy of  
electrons at 0 K (E )





=
Number of energy Energy of 
States at 0 K electron
   

   
   

  TE =
FoE

0
N (E) dE E

=  
FoE

3/2 1/2
3

0

2 8m E  E dE 
4h



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 TE =  
FoE

3/2 3/2
3

0

2 8m E  dE
4h




=  
FoE5/23/2

3
0

E8m
5 / 22h

 
 
  

=  3/2 5/2
F3 o

2 8m E
5 2h




TE =   5/ 2

o

3/2
F3 8m E

5h


... (12)

Substitute equation (12) and (9) in equation (11)

avgE =
 

 

o

o

3/ 2 5 / 2
F3

3/ 2 3/ 2
F3

8m E
5h

8m E
3h





avg
The average of 

 E
electron at 0K is


 


= Fo

3 E
5

1.12  WORK FUNCTION

It is defined as the minimum energy required to remove an electron from
the metal surface at absolute zero (0 K) is called as work function.

1.12.1  Explanation

Let EF be the maximum energy of an electron called Fermi energy and EB be the
energy of the metal barrier surface.

1. If we supply energy EB greater than EF, then no of electron escapes from the
metal.

2. In order to make it to escape, an additional amount of energy equal to
(EB – EF ) is required. i.e., EB + (EB – EF )

hp
Highlight

hp
Highlight

hp
Highlight
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3. This difference in energy EW = EB – EF  is called Work function of a
metal.

4. This Concept is shown in energy diagram.

5. Different metals have different work functions.

Fig. 1.7 Work function

Work functions for Some Metals

 Metal Work function (eV)
Cu 4.30
Fe 4.74
K 1.90
Na 2.00
Al 3.00
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SOLVED PROBLEMS
1. The following datas are given for copper

i) Density = 8.92 × 103 kgm–3

ii) Resistivity = 1.73 × 108 m
iii)Atomic weight = 63.5 kg
Calculate the mobility and the average time collision of electrons in copper
obeying classical laws   (AU - NOV 2003)

     Solution:

Given data:

The density of the copper is         d = 3 38.92 × 10  kgm

The resistivity of the copper         = 81.73 × 10 m

The Atomic weight of the copper A = 63.5 kgs

We know the carrier concentration (n) =
Avagadro number × Density

 Atomic weight

=
23 36.023 10 8.92 10
63.5

  

The conductivity of copper is      n = 25 38.46 × 10 m

The electrical conductivity  = 8
1 1

1.73 10


 

= 9 1 15.78 10 m   

We know  =
2ne

m


Average time colllision  = 2
m

ne


=
–9 –31

25 –19 2
5.78 10 9.11 10

8.46 10 (1.6 10 )
  
  

 = 2.380 × 10–27 sec
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Mobility  =
ne


=
9

25 –19
5.78 10

8.46 10 1.6 10


  

 = 4.27 m2 v–1 s–1

 = 4.27 × 10–16 m2 V–1 s–1

2. A uniform silver wire has a resistivity of  1.54×10–8 m at room
temperature. For an electric field along the wire of 1 volt cm–1, compute
the average drift velocity of electron assuming that there is 5.8 × 1028

conduction electrons /m3.  Also calculate the mobility.   (AU - MAY 2011)

Solution:

Given data:
The resistivity of silver  = 1.54 × 10–8 m
Electric field along the wire E = 1 volt cm–1 (or) 100 volts m–1

The carrier concentration of electron n = 5.8 × 1028 m–3

a)   Mobility of the electron

 =
1 (or) 

ne ne



1 

   

 = 8 28 19
1

5.8 × 10  × 1.61.54 × 10 01   

Mobility  = 6.9973 × 10–3 m2 V–1 s–1

b) Drift velocity
  Vd = E
  Vd = 6.9973 × 10–3 ×100

Drift velocity (Vd) = 0.69973 m s–1
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3. The density of silver 10.5 × 103 kg–3 assuming that each silver atom provides
one conduction electron. The conductivity of silver at 20°C is
6.8 × 107 –1 m–1. Calculate the density and mobility of electron in silver
with atomic weight 107.9 × 10–3 kg m–2.  (A.U - JUNE 2010)

Solution:

Given:

Density of silver d = 10.5 × 103 kgm–3

Conductivity of silver at 20OC  = 6.8 × 107 –1 m–1

Atomic weight A = 107.9

We know the carrier concentration n =
Avagadro Number  Density

Atomic weight


=
23 36.023 10 10.5 10
107.9

  

= 5.86 × 1025 m3

We know, the conductivity is given by  = ne

 = ne


=
7

25 19
6.8 10

5.86 10 1.6 10


  

 = 7.2525 × 10–3 m2 V–1 s–1

4. Calculate the drift velocity of electrons in copper and current density in
wire of diameter 0.16 cm which carries a steady current of 10 A. Given
n  = 8.46 × 1028 m–3.

Solution:

Given:

Diameter of the wire d = 0.16 cm
Current flowing = 10 A
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Current density J = 2
Current

Area of cross section (A )

=
 2 2

10 10 = 
r d / 2 

dr
2

   


= 22

10

3.14 0.16 10 / 2   

J = 4.976 × 106 Am–2

J = dneV

Vd =
J

ne

=
6

28 19
4.97 10

8.46 10 1.6 10


  

Drift velocity Vd = 3.67 × 10–4 m s–1

5. The resistivity of a piece of silver at room temperature 1.6 × 10–8 m.
The effective number of conduction electrons is 0.9 per atom and the Fermi
energy is 5.5 eV. Estimate the mean free path of the conduction electrons.
Calculate the electronic relaxation time and the electronic drift velocity in
a field of 100 Vm–1. The density of silver is 1.05 × 104 kgm–3 (m/m* = 1).

Solution:
Given:

Resistivity silver  = 1.6 × 10–8 m
Electric field E = 100 Vm–1

The conductivity of silver is  = 8
1 1

1.6 10


 

= 7 1 16.25 10 m  

We know the carrier concentration n =
Avagadro Number × Density

Atomic weight
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n =
23 46.023 10 1.05 10

107.9
  

= 5.86 ×1025 m–3

Relaxation time    = 2
m

ne


=
7 31

25 19 2
6.25 10 9.11 10

5.86 10 (1.6 10 )




  

  

= 3.79 × 10–11 sec

Mean free path  = c

= 3 × 108 × 3.78 × 10–11

 = 1.134 × 10–3 m

J = E

= 6.25 × 107 × 100

= 6.25 × 109 Am–2

Vd =
9

25 19
J 6.25 10

ne 5.86 10 1.6 10



  

Vd = 0.666 × 102 ms–1

6. A conducting rod contains 8.5 × 1028 electrons/m3. Calculate its resistivity
at room temperature and also the mobility of electrons if the collision time
for electron scattering is 2 × 10–14 sec. (AU - JUNE 2010, MAY 2011)
Solution:

Given data:

Number of electrons n = 28 38.5 10  electrons m

Collision time  = 142 10 sec
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Electrical conductivity  =
2ne τ

m

=
28 19 2 14

31
8.5 10 (1.6 × 10 ) 2 10

9.11 10

 


   



 = 7 1 14.77 10 m  

Electrical Resistivity  =
1
 = 7

1
4.77 10

 = 82.09 10 m 

Mobility of electron  = ne


 ( = ne )

=
7

28 19
4.77 10

8.5 10 1.6 × 10


 

 = 3 2 1 13.512 10 m V s  

7.  Evaluate the Fermi function for energy KBT above the Fermi energy.
(AU - MAY 2009)

Solution:

We know Fermi Function F(E) =  F BE E K T
1

1 e 
For an energy KBT aboveFermi energy

FE E = BK T

F(E) = 1
1 1

1 2.71831 e




Fermi distribution function F(E) = 0.2689
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8. Fr ee elect r on densi t y of  aluminum i s 18.1 × 1028m–3 Calculate its
Fermi energy at 0 K. [Planck’s constant and mass of free electron are
6.62 × 10–34Js, and  9.1 × 10–34Kg] (AU - JUNE 2012)
Solution:
Given data:

Planck’s constant h = 6.62 × 10–34 Js
Mass of electron m = 9.1 × 10–34 Kg
Electron density N = 18.1 × 1028 m–3

Fermi energy at 0 K    FoE =
2/3 23N h

8m
 
  

 FoE =
2 / 3 228 34

31
3 18.1 × 10 (6.62 × 10 )

3.14 8 9.1 × 10





            

=  2 /329 381.7292 × 10 6.019 10 

  FoE = 1.8689 × 10–18 J

(or)   FoE =
18

19
1.8689 10 eV

1.6 10








Fermi energy at 0 K   FoE = 11.68 eV

9. The Fermi temperature of a metal is 24600 K. Calculate the Fermi velocity.
(AU - NOV 2003)

Solution:
Given data:

Temperature = 24600 K
The relation between Fermi energy, Fermi velocity and Fermi temperature is given by

EF = B F
3 K T
2  = 2

F
1 mV
2

  FV = B F3K T
m

=
23

31
31.38x10 x24600

9.11x10





Fermi velocity   FV = 3 1863.30 10 ms



1.30 ENGINEERING PHYSICS - II

10. Use the Fermi distribution function to obtain the value of F(E) for
E – EF = 0.01 eV at 200K.

Solution:

Given data:

Fermi Function F (E) =  F BE E /K T
1

1 e 

Boltzman constant     KB = 1.38 × 10–23 JK–1

   E –EF = 0.01 eV = 0.01 × 1.6 × 10–19= 1.6 × 10–21J

T = 200 K

F (E) =  21 231.6 × 10 / 1.38 × 10 200

1

1 e
  



= 0.5797
1

1 e

=
1 1

1 1.7855 2.7855




Fermi function F (E) = 0.3589

11. Calculate the drift velocity of the free electrons (with a mobility of
3.5 × 10–3 m2 V–1 s–1) in copper for an electric field strength of  0.5 V m–1.

Solution:

Given data:

Mobility  = 3.5 × 10–3 m2 V–1 s–1

Electric field strength = 0.5 vm –1

Drift Velocity, dV = E

= 3.5 × 10–3 × 0.5

= 1.75 × 10–3 ms–1
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13. Copper has electrical conductivity at 300 K as 6.40 × 107 m–1. Calculate
the thermal conductivity of copper.(Lorentz number is 2.44 × 10–8 W  k–2).

(AU - JUNE 2012)

Solution:

Given data:

Electrical conductivity  = 6.40 × 107 –1 m–1

T = 300 K

K


= LT

K = LT

K = 6.40 × 107 × 2.44 10–8 × 300

K = 468.48 Wm–1 K–1

14. The thermal and electrical conductivities of copper at 20°C are
380 Wm–1 K–1  and 5.67 × 107 –1 m–1 respectively.  Calculate the Lorentz
number.

Solution:

Given data:

Thermal conductivity K = 380 m–1 K–1

Electrical conductivity  = 5.67 × 107 –1m–1

T = (273 + 20)

= 293 K

  
K


= LT

L =
K
T

L = 7

380
5.67 × 10  × 293

Lortentz number L = 2.2874 × 10–8 W K–2
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15. Calculate the Fermi energy of copper at 0 K if the concentration of electron
is 8.5 × 1028 m–3. (AU - JUNE 2010)

Solution:
Electron density n = 8.5 × 1028 m–3

Fermi energy at 0 K Fo(E ) =
2/32h 3N

8m
 
  

=

2 / 334 2 28

31
(6.62 × 10 ) 3 × 8.5 × 10

3.148 × 9.1 × 10





 
 
  

= 38 28 2 / 36.019 × 10  (8.121 × 10 ) 

= 38 196.019 × 10  1.875 × 10 

  oFE = 181.1287 × 10 J

  oFE =
18

19
1.1287 × 10 eV

1.6 × 10





  oFE = 7.05 eV 

16. The mobility of electrons in copper 3×103m2V–1s–1 assuming e=1.6×10–19C
and  me=9.1×10–31 kg. Calculate the mean collision time. (AU - JUN.2009)

Solution:

Given data:

Mobility of electrons in copper µ = 3×103m2V–1s–1

    Charge of electrons e = 6×10–19C

Mass of electrons me= 9.1×10–31 kg

 Electrical conductivity =
2ne

m




CONDUCTING MATERIALS 1.33

  2

m
ne


 
m
e


ne


  


31 3

19

9.1 10 3 10
1.6 10

 



  


Mean collision time of electron  17.06 × 10–15 sec

17. The thermal conductivity of a metal is 123.92 Wm–1K–1. Find the electrical
conductivity and Lorentz number when the metal posses relaxation time
10–14 sec at 300 K. (Density of electron = 6×1028 per m3) (AU - DEC 2010)

Solution:

Given data:

The Thermal conductivity of a metal K = 123.92 Wm–1K–1

Relaxation time   10–14 sec

Electrical conductivity  
2ne

m


 
 228 19 14

31

6 10 1.6 10 10
9.1 10

 



   



 7 11.686 10 m   

Lorentz number L =
K


= 7

123.92
1.68 10 300 

L = 2.45 × 10–8
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18. Calculate the drift velocity of the free electrons in copper for electric field
strength of 2Vm–1. (Mobility of electrons µ = 3.5 × 10–3 m2V–1s–1).

(AU - DEC 2009, JUN 2012)
Solution:
Given data:

Electric field strength   E = 2V–1m
Mobility of electrons   µ = 3.5 × 10–3 m2V–1s–1

Drift velocity    Vd = µ E
= 3.5 × 10–3 × 2

Vd = 7 × 10–3 ms–1

19. Find the velocity of copper wire whose cross-sectional area is 1 mm when
the wire carries a current of 10 A. Assume that each copper atom
contributes one election to the electron gas.    (AU - DEC 2009)

Solution:

Given data:

Current  I = 10 A
Number of electrons n = 8.5 × 1028 m–3

Area of cross-section A = 1 mm = 1 × 10–3m
We know J = neVd

Vd =
J

ne

Current density J =
Current (I)

Area A cross sec tion (A) = 3
10

1 10

J = 3 210 10 Am 

 Vd =
J

ne  =
3

28 19

10 10
8.5 10 1.6 10


  

Drift velocity Vd = 7.353 × 10–7 ms–1
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SHORT QUESTIONS WITH ANSWERS
1. What is meant by a free electron?

The electron moves freely in all directions in the absence of electric field is called
free electron (or) valance electron. These electrons collide with each other, the
collisions are perfectly elastic collisions hence there is no loss of energy.  Since
the free electron is in random motion.

2. Define Drift velocity of electrons.    (AU - June 2010, 2011, Nov 2012)

Drift velocity (Vd) is the average velocity acquired by an electron in a particular
direction due to applied electric field.

Drift Velocity =
Average distance travelled by the electron

Time taken

vd = 1ms
t



3. Define mobility of electrons.   (AU- April 2003, June 2009, 2010)

The mobility is defined as the drift velocity (Vd) acquired by the free electron per
unit electric field (E)

 = 2 1 1dV m V s
E

 

4. Define mean free path.   (AU - June 2006, Nov 2009, 2010)

The average distance travelled by an electron between two successive collisions
is called mean free path.

5. Define relaxation time.    (AU - June 2009)

Relaxation time is the time taken by the electron to reach equilibrium position
from its disturbed position in the presence of electric field.

   c =
dV


 sec

6. Define electrical conductivity.    (AU - April 2002)

The electrical conductivity is defined as the quantity of electricity flowing per unit
area per unit time at a constant potential gradient.

 =
2ne

m
 1 1Ohm m 
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7. Define Thermal Conductivity.

Thermal conductivity of material is defined as the amount of heat flowing through
an unit area per unit time of temperature gradient.

–1 –1QK Wm K
dTA
dx

 
 
  

8. State Widemann-Franz law.

(AU - June 2006, 2007,2010 May 2009, Nov 2009, 2010,2011)

The ratio between the thermal conductivity (K) and electrical conductivity () of
a metal is directly proportional to the absolute temperature of the metal.

K K  T    or    LT 
 

9. List out the three main theories developed to describe the structure of
materials. (or) List the types of electron theory of metals.

1. Classical free electron theory

2. Quantum free electron theory

3. Zone (or) Band theory

10. What are the Sources of resistance in metals? (AU - Nov 2003)

The resistance in metals is due to

1. Presence of impurities in the metals.

2. Temperature of the metal.

3. Number o free electrons.

11. What is the effect of temperature on metals

When temperature of the metal increases, the mobility of the electron decreases
and hence the electrical conductivity decreases.  The addition of impurities in the
metal decreases the electrical conductivity.
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12. What are the uses (or) success of classical free electron theory?
(AU - June 2006, 2011)

1. It is used to verify the Ohm’s law.

2. It is used to explain electrical conductivity and thermal conductivity of metals.

3. It is used to derive Widemann-Franz law.

3. It is used to explain the optical properties of metal.

13. What are the drawbacks of classical free electron theory?  (or) State any
four demerits of Classical free electron theory?

(AU - June 2006, June 2010,2011)

1. It is a macroscopic theory.

2. According  to classical free electron theory, all the free electrons will absorb
energy, but the quantum free electron theory states that only few electrons will
absorb energy.

3. This theory cannot explain the Compton effect, Photo-electric effect,
para-magnetism and ferromagnetism, etc.,

4. This theory cannot explain the electron conductivity of semiconductors and
insulators.

5. Dual nature of light radiation cannot be explained.

6. The theoretical and experimental values of specific heat and electronic specific
heat are not matched.

7.  By classical theory 
K =T


 is constant for all temperature, but by quantum

theory  K =T


 is not a constant for all temperature.

8. The Lorentz number obtained by classical theory  does not have good agreement
with experimental value and it is rectified by quantum theory.
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14. What is Lorentz Number?

Lorentz Number L =
2

2
3K
2e

B

L =
23 2

19 2
3 × (1.38 × 10 )
(2 × 1.6 × 10 )





L = 1.12 × 10–8 W K–2

It is found that the classical value of Lorentz number is only one half of the
experimental value (2.44 × 10–8 WK–2).  The discrepancy of L value is the
failure of the classical theory.  This can be rectified by quantum theory.

15. What is the basic assumption of Zone theory or Band theory of solids?
According to quantum free electron theory, the electrons in a metal were assumed
to be moving in a region of constant potential but it fails to explain, why some
solids behave as conductors, some as insulators and some as semiconductors.
Therefore instead of considering an electron to move in a constant potential, the
Zone theory of solids tells that the electrons are assumed to move in a field of
periodic potential.

16. Distinguish between Electrical  conductivity and Thermal conductivity.

S.No Electrical conductivity Thermal conductivity

1. The electical conductivity is defined Thermal conductivity is defined as
as the quantity of electricity flowing the amount of heat flowing through
per unit area per unit time at a an unit area per unit time of
constant potential gratient. temperature gratient.

2. Electrical conductivity is purely Thermal conductivity is due to
depend on free electrons. both free electrons and photons.

3. Conduction of electricity takes Conduction of heat takes place
place from higher potential end from hot end to cold end.
to lower potential end.

4.  =
2ne

m
 1 1Ohm m 

–1 –1QK Wm K
dTA
dx

 
 
  

5. Unit : Ohm–1 m–1 Unit : W m–1 K–1
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17. What are the similarities between electrical and thermal conductivity of
metals?

1. The electrical and thermal conductivities decrease with the increase in
temperature and impurities.

2. The electrical and thermal conductivity is very high at low temperatures.

3. For non-metals the electrical and thermal conductivity is very less.

18. Distinguish between relaxation time and collision time.
(AU - June 2009, 2010)

S.No Relaxation time Collision time

1. It is the time taken by the electron It is the time taken by the free
to reach equilibrium position from electron between two succesive
its distrubed position in the presence collisions.
of electrical field.

2.  = 10–14 sec c =  / vd

19. Write microscopic form of Ohm’s law and state whether it is true for all
temperature.    (AU - June 2009)

1) Microscopically we can write V = IR as J  = E

2) Since the resistivity varies with respect to the temperature, the microscopic
form of ohm’s law is not true for all the temperature.

20. What are the factors that affect the electrical resistivity of materials?

1. Temperature

2. Impurities

3. Inperfections

4. Magnetic field

5. Pressure and strain.
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21. Define Fermi level, Fermi energy and this importance.

(AU - June 2007, 2009, 2010, 2012, Dec 2012)

Fermi level : The Fermi level is the highest reference energy level of a particle
at absolute zero.

Importance : It is the reference energy level which separates the filled energy
level and vacant energy levels.

Fermi energy: It is the maximum energy of the quantum state corresponding
to Fermi energy level at absolute zero.

Importance : Fermi energy determines the energy of the particle at any
temperature.

22. Define Fermi Distribution function.    (AU - June 2010)

It is an expression for the distribution of electrons among the energy levels as a
function of temperature and it is the probability of finding an electron in particular
energy state of energy E is given by,

F

B

1F(E)
E E1 exp
K T


   
 

23. Define density of states and its importance. (AU - May 2008, June 2010)

Density of states is defined the as the number of energy states per unit volume in
an energy interval of a metal.  It is use to calculate the number of charge carriers
per unit volume of any solid.

Number of energy states between E and E + dEN (E) dE = 
Volume of metal

Importance :  It is used for the Fermi energy calculation at any temperature.

24. Define work function

It is define as the minimum energy required to remove an electron from the metal
surface at 0K.  in order to make it escape, an additional amount of energy equal
to is required. i.e., .This difference in energy is called Work function.
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25. What do you mean by carrier concentration in metal?   (AU - June 2009)

In metal carrier concentration is number of free electrons per unit volume in between
the energy interval 0 to  it is given by

Carrier concentration  N D (E) F(E) dE 
26. How classical free electron theory failed to account for specific heat of

solid?     (AU - June 2009)

According to classical free electron theory, the experimental and theoretical value
of specific heat of solid are not matched.  Hence classical free electron theory is
failed.

PART – B QUESTIONS
1. Deduce a mathematical expression for electrical conductivity and thermal

conductivity of a conducting metal and hence, obtain Widemann-Franz law.
(AU - April 2002, May 2008, T2009, Ch2009)

2. Define Fermi energy, and Derive an expression for the Fermi energy of a system
of free electrons.     (AU - Nov 2003)

3. i) Define density of states in metals in
ii) Write down the expression for Fermi-Dirac distribution function.
iii) Derive an expression for the Fermi energy of a system of free electrons.

4. With a neat diagram and derive an expression for density of states.
(AU - May 2004)

5. Write Fermi-Dirac distribution function. Explain how Fermi function varies with
temperature.   (AU - May 2004, T2009)

6. With the help of Fermi-Dirac statistics, derive the expression for density of states
and deduce Fermi energy. (AU - May 2004, Dec 2005)

7. i) What are the special features of classical free electron theory?
ii) Derive an expression for the electrical conductivity of a metal.
iii) How it is affected by temperature and alloying?

(AU - June 2006, CB2009)
8. Derive an expression for density of states in a metal and hence obtain the

Fermi energy in terms of density of free electrons, at 0K.     (AU - Nov 2007)
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ASSIGNMENT PROBLEMS
1. A Copper wire whose is 0.16 cm carries a steady current of 20 A.  What is the

current density of wire?  Also calculate the drift velocity of the electrons in copper.
2 4 1

d(Ans : J = 9.952 A/m ,  and V  = 7.35 x 10  ms )- -

2. The thermal and electrical conductivities of Cu at 20°C are 1 1390 Wm  K  and
5.87 × 10–7 –1 m–1respectively.  Calculate the Lorentz number.

(Ans : 2.267 × 10–8 W  K–1)

3. Calculate the electrical and thermal conductivities of a metal rod with relaxation
time 1410 second at 300K.  Also calculate the Lorentz number..

(Density of electron = 6 × 1028 m–3)

(Ans :    = 1.6879 × 10–7  –1 m –1,   K = 123.927 Wm–1 K –1,
L = 2.4474 × 10–18 WK–2)

4. Calculate the drift velocity and mean free path of copper when it carries a steady
current of 10 amperes and whose radius is 0.08 cm.  Assume that the mean
thermal velocity 1.6 × 106 m/s and the resistivity of copper 2 × 10–8  m.

5 8(Ans : (i) 36.6 x 10 m/s (ii) 3.94 x 10 m)-

5. The resistivity of aluminum at room temperature is  2 × 10–8  m.Calculate
i) The drift velocity ii) mean free path on the basis of classical free electron theory.

1(Ans : (i) 0.396 ms ;  (ii) 2.65nm)-

6. Using the Fermi function, evaluate the temperature at which there is 1% probability
in a solid will have an energy 0.5 eV above EF  of  5 eV.   (Ans : 1260 K)



2.1 INTRODUCTION
A semiconductor has electrical conductivity between that of a conductor and an

insulator. Semiconductors differ from metals in their characteristic property of
decreasing electrical resistivity with increasing temperature. Semiconductors can also
display properties of passing current more easily in one direction than the other, and
sensitivity to light.

Because the conductive properties of a semiconductor can be modified by
controlled addition of impurities or by the application of electrical fields or light,
semiconductors are very useful devices for amplification of signals, switching, and
energy conversion. The comprehensive theory of semiconductors relies on the principles
of quantum physics to explain the motions of electrons through a lattice of atoms.

Current conduction in a semiconductor occurs via free electrons and holes,
collectively known as charge carriers. Adding a small amount of impurity atoms greatly
increases the number of charge carriers within it. When a doped semiconductor contains
excess holes it is called “p-type,” and when it contains excess free electrons it is
known as “n-type”.

 The semiconductor material used in devices is doped under highly controlled
conditions to precisely control the location and concentration of p- and n-type dopants.
A single semiconductor crystal can have multiple p and n type regions; the p-n junctions
between these regions have many useful electronic properties.

Semiconducting Materials

2
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Semiconductors are the foundation of modern electronics, including radio,
computers, and telephones. Semiconductor-based electronic components include
transistors, solar cells, many kinds of diodes including the light-emitting diode (LED),
the silicon controlled rectifier, photo-diodes, digital analog integrated circuits. Increasing
understanding of semiconductor materials and fabrication processes has made possible
continuing increases in the complexity and speed of semiconductor devices, an effect
known as Moore’s Law.

2.1.1 Properties of semiconductor

1. The resistivity of semiconductors lies between a conductor and an Insulator.
(It various from 10–4 to 0.5 m).

2. At 0 K it behave as insulator.

3. They have negative temperature Coefficient of resistance. (when the
temperature is increased large number of charge carriers are produced due
to breaking of covalent bonds and hence these electrons move freely and
gives rise to conductivity)

4. In semiconductors, both electrons and holes are charge carriers.

e h    

Where e and h is the conductivities due to electron and holes.

5. If we increase the temperature of semiconductor, its electrical conductivity
also increases.

6. They have an empty conduction band and almost filled valence band 0 K.

7. They are formed by a covalent bonds.

8. They have small energy gap (or) band gap.

2.2 CLASSIFICATION OF SEMICONDUCTORS
Based on the purity, semiconductor is classified into two types.

1. Intrinsic semiconductors or Elemental semiconductors

2. Extrinsic semiconductors or Compound semiconductors
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2.2.1 Intrinsic semiconductors

A pure semiconductor without any impurities is known as an intrinsic
semiconductor.

Example: Ge, Si (In the form of pure)

These are made from single element. They also known as indirect band gap
semiconductors.  In which the recombination of free electron from the conduction
band with the hole in the valence band takes place via traps.  During recombination
phonons [lattice vibrations] are produced and they heat the crystal lattice (position of
the atom). These are the IV group element in the periodic table.

2.2.2 Compound Semiconductors

The Compound Semiconductor is a semiconductor compound composed of
elements from two or more different groups of the periodic table. They also known as
direct band gap semiconductors.

i.e.,   III – V group, II – VI group and IV – VI group.

Here the recombination electron and hole takes place directly, during
recombination photons are emitted.

Example : GaAs, GaP,

Based on the type of impurity they are classified into

i) N-type semiconductor

ii) P-type semiconductor

2.2.3 Difference between N-type and P-type semiconductor

  S. No N-type P-type

1. It is donor type It is acceptor type

2. Impurity atom is pentavalent Impurity atom is trivalent

3. Donor level lies close to the Acceptor level lies close to the
bottom of the conduction band top of the valence band.
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2.2.4 Difference between Elemental and Compound
Semiconductors

  S.No       Elemental semiconductors Compound semiconductors

1. These are made from single element. These are made from compound
(mixed) element.

2. These are made from IV group These are made from III and V [or]
and VI group elements II and VI elements.

3. These are called as indirect band gap These are called as direct band gap
semiconductor (electron-hole semiconductor (electron-hole
recombination takes place through traps) recombination takes place directly)

4. Heat is produced in the recombination Photons are emitted during
recombination

5. Life time of charge carriers is more Life time of charge carriers is less
due to indirect recombination due to direct recombination.

6. Current amplification is more Current amplification is less.

7. These are used for making diodes, These are used for making LED,
transistor, etc. laser diodes, etc.

8. Example : Ge, Si Example : GaAs, GaP, CdS, MgO

2.3 CLASSIFICATION OF CONDUCTORS, INSULATORS
AND SEMICONDUCTORS BASED ON BAND THEORY

The electrical conduction properties of different elements and compounds can
be explained in terms of the electrons having energies in the valence and conduction
bands. The electrons lying in the lower energy bands, which are normally filled, play
no part in the conduction process.

2.3.1 Conductors

Conductors are those materials in which plenty of free electrons are available
for electric conduction.
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In terms of energy bands, it means that electrical conductors are those which
have overlapping valence and conduction bands as shown in Figure. In fact, there is
no physical distinction between the two bands, hence, the availability of a large number
of conduction electrons.

Hence the free electrons can easily move from the valence band to conduction
band, and are available for electrical conduction under the action of an electric field.

Another point worth noting is that in the absence of forbidden energy band in
good conductors, there is no structure to establish holes. The total current in such
conductors is simply a flow of electrons. It is exactly for this reason that the existence
of holes was not discovered until semiconductors were studied thoroughly.

Overlap
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(c)

Valence band

Conduction band

Fig.2.1 Energy band gap (a) conductor (b) insulator and (c) semiconductor

2.3.2 Insulators

Stated simply, insulators are those materials in which valence electrons are tightly
bonded to their parent atoms, thus requiring very large electric field to remove them
from the attraction of the nuclei.

a) Have a filled valence band
b) Have an empty conduction band and
c) Have a large energy gap (the order of > 3 eV) between them.
This is shown in Fig. 2.1(b). For conduction process, electrons must be given sufficient

energy to jump from the valence band to the conduction band. Increase in temperature
enables some electrons to go to the conduction band which infact accounts for the negative
resistance – temperature coefficient of insulators. Only at very high temperature, the thermal
energy will be sufficient to raise the electrons from valence band to conduction band.
Therefore at high temperatures even insulators can conduct electric current.
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2.3.3 Semiconductors

A semiconductor material is one whose electrical properties lie in between those
of insulators and good conductors. (Example: Ge, Si).

In terms of energy band, semiconductors can be defined as those materials
which have almost an empty conduction band and almost filled valence band with a
very narrow energy gap (of the order of 1 eV) separating the two as shown in Figure.

In semiconductors, there is a small energy gap. Hence, the electrons require
small energy to jump from valence band to conduction band. This energy may be in
the form of heat or light. Even at room temperature, the thermal energy is sufficient to
transfer electrons from valence band to conduction band. But when the semiconductor
is at zero Kelvin, the thermal energy is not sufficient to transfer the electrons from the
valence band to conduction band.

Semiconductors at 0K behave like insulators. In semiconductors the resistance
decreases with increase in temperature.

The resistivity of the above three classes of materials as follows

Conductors = 10–8 to 10–6 ohm m

Insulators = 1010 to 1016 ohm m

Semiconductors = 10–4  to 0.5 ohm m

2.3.4 Mobility and Conductivity in Semiconductors

When an electric field (E) is applied to a semiconductor, the free electrons and
holes are drifted in opposite direction of the electric field, due to this a current is
produced called drift velocity (Vd)

 d

d

V  E

V E



 

Where is called mobility.

Mobility is defined as the ratio of drift velocity to the applied electric field.
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The total current in a semiconductor I = Ie + Ih

 I = n e  e E A + p e h E A

 I = e E A [n  e + p  h]

Where e - mobility of the free electrons (n)

h - mobility of the holes (p)

In the case of intrinsic semiconductor, number of free electrons [n] in the
conduction band is equal to the number of holes [p] in the valence band.

 n = p = ni [intrinsic charge carrier concentration]

I = e E A [ni e + ni h]

I = ni e E A [e + h]

The electrical conductivity of the intrinsic semiconductor is due to drifting action
of electrons and holes is given by,

i = ni e [e + h]

The electrical conductivity of the extrinsic semiconductor is

p = nn e e

N = np e h

2.4 CARRIER CONCENTRATION IN INTRINSIC SEMI-
CONDUCTORS

In a semiconductor both electrons and holes are charge carriers (know as carrier
concentration).  A semiconductor in which holes and electrons are created by thermal
excitation across the energy gap is called an intrinsic semiconductor.

In an intrinsic semiconductor the number of holes is equal to the number of free
electrons.

At T = 0K, valence band is completely filled and conduction band is completely
empty.  Thus the intrinsic semiconductor behaves as a perfect insulator.

At T > 0K, the electron from the valence band shifted to conduction band
across the band gap.
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Thus there are number of free electrons and holes in intrinsic semiconductor.
Fermi level lies in midway between conduction band and valance band in intrinsic
semiconductors.





EV

EC

EF (at 0K)

At T > 0 K





EV

EC

EF (at 0K)

At T = 0 K

Valance band

Conduction band

Fig. 2.2 Energy Band Diagram in an Intrinsic Semiconductor

2.4.1 Density of electrons in conduction band

Let dN be the number of electrons in the energy interval E and E + dE in the
conduction band.

  dN = N(E) dE F(E) ... (1)

Where  N (E) dE is the density of states in the energy interval E and E + dE and
F (E) is the probability that a state of energy E is occupied.

The number of electrons in conduction band can be calculated by integrating the
equation(1) from energy cE (ie., energy from the bottom of the conduction cE  to the
top of conduction band )

Ne =
cE

N(E) dE F(E)

 ... (2)

We know that,

  N (E) dE = 3/2 1/2
3 (8m) E dE

2h


Since, the semiconductor is a crystal, the electron motion is considered in the
periodic potential.  So, the mass ‘m’ is replaced as effective mass *

em and the kinetic
energy of the electron, E = E – cE
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N (E) dE =
* 3/2 1/2
e c3 (8m ) [E E ] dE

2h


 ... (3)

F (E) =
F

B

1
[E E ]1 exp

K T
   
 

In the above expression FE E , So we can neglect one (1) in the denominator..

F (E) =
F

B

1
[E E ]exp

K T
 
 
 

... (4)

Substituting equation (3) & (4) in equation (2)

Ne = * F
e

B

3 / 2 1/ 2
3

[E E](8m ) [E E ] exp dEc K T2hEc

   
  

 
  

To solve this integral

Put    E – Ec =  x KBT

E = Ec + x KBT

Differentiating  above  equation, we get

   dE = KBT dx

Lower limits Upper limits

c B B

c B

c c B

When E – E x K T When E – Ec x K T
E E – Ec x K T

E E x K T x
0 x

 
  

   


 The limits are 0 to  
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Ne =
3/ 2 1/ 2

F B C
B B

B

*
e3

E xK T E(8m )  (xK T) exp K Tdx
K T2h 0

   
 
 



Ne =
3/ 23/ 2 1/ 2 F C B

B
B B

*  e3
E E xK T(8m ) (x) (K T) exp exp dx

K T K T2h 0

     
   
   



Ne =
1/ 2F C

B
B

3/2
3

0
e

E E(8m K T) exp (x) exp( x)dx
K T2h


 

 
 



1/ 2

0
sin ce (x) exp( x)dx

2

   
  



Ne =
* 3/ 2 F C
e B3

B

E E(8m K T) exp  
2h K T 2

  
 
 

Ne =
3/ 2

B F C

B

e
2

(8 m K T) E E1 exp
4 K Th

    
   
   

Density of electrons in conduction band

Ne = B F C
e

B

3/2
e
2

(2 m K T) E EN 2 exp
K Th

    
    

   
... (6)

2.4.2 Density of Holes in Valence band

Let dP be the number of holes in the energy interval E and E + dE in the valence
band.

dP= N (E) dE [1 – F(E)] ... (7)

(1– F (E) is the remaining probability after finding the density of electrons)

The total number of holes within limits  to vE  is

Nh
Ev

N(E) dE [1–F(E)]
 ... (8)
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We know that,

N (E) dE = 3/2 1/2
3 (8m) E  dE

2h


Since, the semiconductor is a crystal, the electron motion is considered in the
periodic potential.  So, the mass m is replaced as effective mass hm  and the kinetic
energy of the electron, E = Ev – E.

N (E) dE =  1/23/2
h v3 (8m ) E E  dE

2h


  

   1 –F (E) =

F

B

F F

B B

[E E ]1 exp 1
K T11-   

[E E ] [E E ]1 exp 1 exp
K T K T

 
  

 
    

    
   

In the above expression E << EF (in valence band),

So we can neglect F

B

E Eexp
K T

 
 
 

 in the denominator when compared with one (1).

  1 – F (E) = F

B

E Eexp
K T

 
 
 

 

Substituting eqn (9) & (10) in eqn (8)

Nh = 3/ 2 1/ 2 F

B

Ev

vh3
[E E ](8m ) [E E] dE exp

K T2h




  
  

 


To solve this Integral

Put EV – E = x KBT

E = EV – x KBT

Differentiating  above  equation, we get

   dE = – KBT dx
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Lower limits Upper limits

V B V B

V

V B V V B

Lower limits
When E – E x K T When E – E x K T

E E E
E x K T E – E x K T

x 0 x

 
  

   

  

 The limits are  to 0

Density of holes in valence band

   Nh =
3/ 2 1/ 2 B F

B B
B

0
v

h3
E xK T E(8m ) (xK T) ( K Tdx) exp

K T2h




  
  

 


   Nh =
3/ 2 1/ 2 F B

B
B B

0 3/2 v h3
E E xK T(8m ) (x) (K T) exp exp dx

K T K T2h




    
   
   



   Nh =

3/ 2

B 1/ 2V F

B

0h
2

8m K T E Eexp  (x) exp( x)dx 
2 K Th





   
    

    


   Nh =

3/ 2

B 1/ 2F
2

B

vh

0

8m K T E Eexp  (x) exp( x)dx 
2 h K T

    
    

    


 1/ 2

0
sin ce (x) exp x dx

2

   
  



   Nh =

3/ 2

B F

B

vh
2

8m K T E Eexp
2 K T 2h

    
   
    

   Nh =

3/ 2

B F

B

vh
2

8 m K T E E1 exp
4 K Th

   
   
    

Density of holes in valence band

   Nh =

3/ 2

B F
h

B

vh
2

2 m K T E EN 2 exp
K Th

   
    

    
... (9)
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2.4.3 Intrinsic Carrier Concentration

In intrinsic semiconductors eN = hN = in  is called intrinsic carrier concentration.

   2
in = e hN N

   2
in =

3/ 23/ 2
BB F F

2 2
B B

e c vh2 m K T2 m K T E E E E2 exp 2 exp
h K T h K T

         
      
       

   2
in =  

23/ 2
3/ 2B

B

c v
e h2

E E2 K T4 m m exp
K Th

 
                 

   2
in =

23/ 2
3/ 2B

2
B

g
e h

E2 K T4 m m exp
h K T

 
                

   in =

1/ 223/ 2
3/ 2B

B

g
e h2

E2 K T4 m m exp
K Th

 
                   

   in =
1/ 23/ 2

3/ 4B

B

g
e h2

E2 K T2 m m exp
K Th

 
            

 
3/ 2

3/ 4B
i

B

g
e h2

E2 K Tn 2 m m exp
2K Th

 
           

... (12)

The equation (12) is called as intrinsic carrier concentration.

Where g c vE E E   is the energy gap between conduction band and valence
band.

Therefore  for intrinsic semiconductor even if impurity is added to increase
N e there will be decrease in Nh and hence the product Ne Nh will remain constant.
This is called Law of mass action.
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2.5 FERMI  LEVEL  AND  VARIATION OF  FERMI  LEVEL WITH
TEMPERATURE IN AN INTRINSIC SEMICONDUCTOR

Derivation of Fermi Level
In an intrinsic semiconductor,
i.e., Density of electrons ( eN ) = Density of holes ( hN )

 
3/ 2

FB

B

e c
2

E E2 m K T2 exp
K Th

    
  

   
=

3/ 2

FB

B

h v
2

E E2 m K T2 exp
K Th

    
  

   

  
3/ 2 F

B

c
e

E Em exp
K T

      
 

=
3/ 2 F

h
B

vE Em exp
K T

      
 

     
3/ 2

h

e

m
m




 
 
 

=
F F

B

c vE E E Eexp
K T

   
 
 

    
3/ 2

h

e

m
m




 
 
 

=
B

F c v2E E Eexp
K T

  
 
 

Taking log on both sides, we get,

    
h

e

3/ 2
m

log
m




 
 
  

=  
 F

B

c v2E E E
K T
 

h

e

m3 log
2 m




 
 
  

=
 F

B

c v2E E E
K T
 

B
h

e

m3 K T log
2 m




 
 
  

=  F c v2E E E  

F2E =   h
B

e
c v

m3E E K T log
2 m




 

   
  

  FE = h
B

e

c v mE E 3 K T log
2 4 m




 

  
  

.  (13)
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h eIf  m  = m ,  then at T = 0 K, 
B

h

e

m3 K T log
2 m




 
 
  

EF = c vE E
2
 

  
... (12)

Therefore, the Fermi level lies in the midway between Conduction level cE and
Valence level vE at T = 0K.

But in general hm  = em  so the Fermi level is a function of temperature and is
raised slightly with temperature.

2.6 DENSITY OF ELECTRONS AND HOLES IN TERMS OF Eg

In terms of energy gap ( gE ).  Where g c vE E E   we can get the expressions
of Ne and Nh by substituting the value of  FE in terms of cE  and vE

Substituting equation (13) in equation (6) we get,

Ne =

*
C V h

3/ 2 B C*
eB

2
B

E E 3 mK T log E
2 4 m2 K T2 exp

h 4K T

  
   

    
    

 
  

=

*
h

3/ 2 C V B C*
3/ 2 e*B

e2
B

m2E 2E 3 K T log 4E
m2 K T2 m exp

h 4K T

  
    

          
 
  

=
3/ 2

3/ 2 C VB

B

h
e2

e

m2(E E )2 K T 32 m exp  log 
4K T 4 mh






                

 g c vSince E E E ,  we can w e   rit 

   Ne
=

3/ 43/ 2
3/ 2B

B

g h
e2

e

2E m2 K T2 m exp  log 
4K T mh






                  
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   Ne =
3/ 43/ 2

3/ 2B

B

g h
e2

e

2E m2 K T2 m exp  log 
4K T mh






                  

=
3/ 43/ 2

3/ 2B

B

g h
e2

e

E m2 K T2 m exp  log 
2K T mh






                  

=
3/ 43/ 4

3/ 2B

B

mh
me

g
e2

E2 K T2 m exp
2K Th


 
 

 
 

           

=
3/ 2

3/ 4 3/ 4B

B

g
e h2

E2 K T2 m m exp
2K Th

 
               

   Ne =
3/ 2

3/ 4B

B

g
e h2

E2 K T2 m m exp
2K Th

            
... (13)

Similarly by substituting equation (13) in equation (11)

    Nh =
3/ 2

3/ 4B

B

g
e h2

E2 K T2 m m exp
2K Th

             
... (14)

Thus, it is found that Ne =  Nh = ni where in  is a intrinsic carrier concertration.

2.7 VARIATION OF FERMI LEVEL IN INTRINSIC SEMICONDUCTOR

Fig. 2.3 Variation of Fermi level in Intrinsic semiconductor
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1. At T = 0 K, the Fermi level lies exactly in midway between conduction
band and Valence band.

2. At T > 0 K, the Fermi level rises slightly upward since hm > em .

2.8 ELECTRICAL CONDUCTIVITY IN INTRINSIC SEMI-
CONDUCTOR

Expression for electrical conductivity in intrinsic semiconductor
The general expression for the electrical conductivity,

  = n e  
The intrinsic electrical conductivity,

ei h = n e p e      

But n = ip = n

i =  i e i hn  e n  e   

Therefore, i =  i e hn  e  

Where e - electron mobility and h - hole mobility

i  =
3/ 2

3/ 4 g* *B
e h

B
e h 2

E2 K Te 2 m m exp
2K Th

               

The electrical conductivity depends on the negative exponential of band gap Eg

between the valance band and conduction band and also for the mobilities of both
holes and electrons. The mobilities in a pure semiconductor are determined by the
interaction of electron with lattice waves or phonons.

So that we can neglect e h     .
The electrical conductivity

i =
B

gE
Cexp

2K T
 
 
 

... (1)

Where C is a constant.
Taking log on both sides of equation (1),

ilog = Log 
B

gE
C exp

2K T
  

  
   
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ilog = Log 
B

gE
C +

2K T
 

 
 

ilog = Log 
B

gE
C –

2K T
 
 
 

log  i

1/T

Fig. 2.4 Variation of Electrical with temperature in intrinsic semiconductor

A graph is drawn between 1/T and Log i from the graph it is noted that this
electrical conductivity increases with temperature.

2.9 DETERMINATION OF BAND GAP ENERGY OF A
SEMICONDUCTOR

We know that the electrical conductivity,

i = g

B

E
Cexp

2K T
 

 
 

The resistivity  i =
i

1


i = g

B

E1 exp  
C 2K T

 
 
 

... (1)

We know resistivity is resistance per unit area per unit length

i = iR A
L ... (2)

 i Resistivity
A Cross sectional area
L  Length

Equating equation (1) and (2)

iR A
L =

g

B

E1 exp
C 2K T

 
 
 
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   iR =
g

B

EL exp
AC 2K T

 
 
 

Taking log on both sides

  ilog R = g

B

ELlog
AC 2K T

 
  
 

The above equation gives us a method of determining the energy gap of an
intrinsic material. If we find the resistance of the intrinsic semiconductor using post
office box or carry Foster’s bridge at various temperatures, we can plot a graph
between 1/T and ilog R

Fig. 2.5 Variation of resistance with temperature in intrinsic semiconductor

From the curve
dy
dx =

g

B

E
2K T

Therefore by finding the slope of line we can calculate the energy band gap
with the following expression.

  gE = B
dy2K  Joules
dx

 
 
 

2.10  EXTRINSIC SEMICONDUCTOR
A semiconductor in which the impurity atoms are added by doping process is

called Extrinsic semiconductor. The addition of impurities increases the carrier
concentration and conductivity. There are two types of impurities.

1. Donor impurity which leads to N-type semiconductor.

2. Acceptor impurity which leads to P-type semiconductor.

1/T
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2.10.1  N-type Semiconductor (Donor impurity)

 Donor impurity means it donates the electron to the semiconductor materials.

 Pentavalent atoms (five valence electrons in their outer most orbit) are called
as donor impurities. Example : Phosphorous, Arsenic and Antimony.

 When a pentavalent atom is added with tetravalent atoms (Ge and Si), the
covalent bond is formed and one element is left free.  Thus one impurity atom
is surrounded by four Ge or Si atoms.

 The remaining electron is loosely bound to the parent impurity atom is detached
from the impurity atom by supplying ionization energy.

 Each impurity atom donates one free electron.  Thus this type of semiconductor
is called as N-type semiconductor.

 The donor atoms form the new energy level called donor energy level ( DE )
very near and below the conduction band.

 At room temperature, almost all the excess electrons donated by the donor
atoms are raised to the conduction  band as majority charge carriers (free
electrons) in N-type semiconductor.

Fig. 2.6 N type semiconductor
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2.10.2  P – type Semiconductor (Acceptor Impurities)

1. Acceptor impurity means it ready to accept an electron to form the covalent
bond in semiconductor materials.

2. Trivalent atoms (three valence electrons in their outer most orbits) are called
as acceptor impurities.  Example: Aluminum, Gallium, Boron and Indium.

3. When a trivalent atom is added with tetravalent atoms (Ge or Si), the covalent
bond is formed and there is one vacancy (hole) for one electron in one of the
covalent bonds, thereby one impurity atom is surrounded by four Ge or Si
atoms.

4. Thus each impurity atom hole is ready to accept an electron.  Thus this type
of semiconductor is called P-type semiconductor.

5. The Acceptor atoms form the new energy level called acceptor energy level
(EA) very near and above the valence band.

6. When a small amount of energy is applied, the electrons from valence band
are moved to the acceptor level and creating holes in the valence band.

7. These valence band holes are the majority charge carriers in the P-type
semiconductor material.

EC

EA

EV

Fig. 2.7 P type semiconductor
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2.11  CHARGE DENSITIES IN A SEMICONDUCTOR
In intrinsic semiconductor, the electron density is equal to hole density.
In Extrinsic semiconductor the electron and hole densities are related by

2
ei hn N N ... (1)

The law of charge neutrality also relate the densities of free electron and holes in
an Extrinsic semiconductor.

The law of charge neutrality states that the total positive charge density is equal
to the total negative charge density.

D A ehN N N N   ... (2)
Where DN is the number of donor atoms.

AN is the number of acceptor atoms.

eN is the density of electrons .

hN is the density of holes.
Case 1:

In N-type semiconductors, there is no acceptor doping atoms. i.e., AN =0 and
also the majority carriers are electrons.  The number of electrons is greater than the
number of holes.

i.e., e hN N . hN can be neglected.

 equation  (2) becomes ND = Ne
Thus in N-type material, the free electron concentration equals to the density of

donor atoms.
Case 2:

In the P-type semiconductor, there is no donor doping atoms.  i.e., DN 0  and also
the majority carriers are holes.  The number of holes is greater than the number of electrons.

i.e., e hN N . Necan be neglected.

 equation (2) becomes A hN N

Thus P-type material, the hole concentration equals to the density of acceptor
atoms.According to the law of mass action.

2
e h iN N n

2 2

2 2
A D

e ei h h i

e i h i

N n / N  and N n / N

N n / N  and N n / N

 

 
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2.12  CARRIER CONCENTRATION IN P-TYPE SEMI-
   CONDUCTOR

P-Type Semiconductor : If trivalent (Aluminum, Gallium, Indium) impurities are
doped with pure semiconducting material the holes are produced, this is called
P - type semiconductor.

Fig. 2.8 Energy level diagram for P-type Semiconductor

We know that,
Density of holes in the valence band in an intrinsic semiconductors is

  Nh =
3/ 2*

Fh B

B

v
2

E E2 m K T2 exp
K Th

   
  

   
... (1)

Put   NV =
3/ 2*

h B
2

2 m K T2
h

 
 
 

... (2)

Density of holes   Nh =
B

Fv
v

E EN exp
K T

 
 
 

... (3)

Density of ionized acceptor atoms is

  A AN  F[E ] = F A
A

B

E EN exp
K T

 
 
 

... (4)

At equilibrium condition,

 

Number of holes Number of electron
per unit volume in per unit volume in accepter

valence band energy level

   
      
      (eqn (3) (eqn (4)
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F

B

v
v

E EN exp
K T

 
 
 

= F A
A

B

E EN exp
K T

 
 
 

    
 F AF

B B

v E EE Eexp exp
K T K T

   
  

   
=  A

v

N
N

   
F F A

B

vE E E Eexp
K T

   
 
 

= A

v

N
N

Taking log on both sides, we get,

   
F F A

B

vE E E Elog exp
K T

    
  

  
= A

v

Nlog
N

 
 
 

F F A

B

vE E E E
K T

   
 
 

= A

v

Nlog
N

 
 
 

v F F AE E E E   = A
B

v

NK T log
N
 
 
 

   F2E =   A
A Bv

v

NE E K T log
N
 

    
 

  FE =
 A B Av

v

E E K T Nlog
2 2 N
  

  
 

Substituting the value vN

EF =
  A

3/ 2v A B *
h B

2

N
E E K T log 2 m K T22 2

h

 
         

... (5)

At T = 0 K

EF =
 v AE E

2
 
 
 

At 0 K fermi level in p type semiconductor lies exactly at the middle of the
acceptor level and the top of the valance band.
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2.12.1  Expression for the density of holes in valence band
  in termsof NA

As the temperature is increased more and more the acceptor atoms are ionized.
Further increase in temperature results in generation of electron hole pairs due to
breaking of covalent bonds and materials tends to behave in a intrinsic manner. The
fermi level gradully moves towards the intrinsic fermi level.

We know density of holes in valence band

Nh =

3/ 2*
v Fh B

2
B

E E(2 m K T)2 exp
h K T

    
   

    
... (1)

Substituting the equation (5) in (1) we get

 v A B A
V 3/ 2*

h B3
2* 2

h B B
h 2

B

E E K T NE log
2 2 2 m K T2

h2 m K T K TN 2 exp log
h 2 K T

  
  

                      
    

=
A3/ 2* 3/ 2*v Ah B

h B2
B 2

N
E E(2 m K T) 1 2 m K T2 exp log

2h 2K T 2
h

  
                           

=

1/ 2
A3/ 2* 3/ 2*v Ah B

h B2
B 2

N
E E(2 m K T) 2 m K T2 exp log

2h 2K T
h

  
                            

=

1/ 2
A3/ 2* 3/ 4*v Ah B
h B2 1/ 2

B 2

N
E E(2 m K T)2 exp log 2 m K T

h 2K T 2
h

  
                            
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=

1/ 2
A3/ 2* 3/ 4*v Ah B
h B2 1/ 2

B 2

N
E E(2 m K T)2 exp 2 m K T

h 2K T 2
h

 
                      

=
3/ 2 3/ 4* *

1/ 2 v A h B h B
A 2 2

B

E E (2 m K T) (2 m K T)(2N ) exp
2K T h h


       
     

    

=
3/ 4*

1/ 2 v A h B
A 2

B

E E (2 m K T)(2N ) exp
2K T h

    
   

  

Here EA  – EV = E is known as ionisation energy of acceptors
i.e. E represents the energy required for an electron to move from valance band (EV)
to acceptor energy level (EA)

3/ 4*
1/ 2 h B

h A 2
B

E (2 m K T)N (2N ) exp
2K T h
    

    
  

2.13  CARRIER CONCENTRATION IN N-TYPE SEMI
   CONDUCTOR

If pentavalent (Phosphorous, Arsenic, Antimony) impurities are doped with pure
semiconducting material the free electrons are produced, this is called N-type
semiconductor.

Fig. 2.9 Energy level diagram for N-type Semiconductor



SEMICONDUCTING MATERIALS 2.27

We know that,

Density of electrons in conduction band in an intrinsic semiconductor is

   N e =
3/ 2

B F
2

B

e c2 m K T E E2 exp
h K T

     
    
     

... (1)

Put   Nc =
3/ 2

B
2

e2 m K T2
h

 
 
 

Density of electrons

  Ne = F

B

c
c

E EN exp
K T

 
 
 

... (2)

Density of ionized donor atoms is

D DN [1 F(E )] =
B

D F
D

E EN exp
K T

 
 
 

... (3)

At equilibrium condition,

Number of electrons Number of holes
per unit volume in per unit volume in donar

conduction band energy level

   
      
      (eqn (2) (eqn (3)

F C
c

B

E EN exp
K T

 
 
 

=
D F

D
B

E EN exp
K T

 
 
 

F

B

D F

B

cE Eexp
K T

E Eexp
K T

 
 
 
 
 
 

=
D

c

N
N

F D F

B

cE E E Eexp
K T

   
 
 

=
D

c

N
N

EV




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Taking log on both sides, we get,

F D F

B

cE E E Elog exp
K T

    
  

  
=

D

c

Nlog
N

 
 
 

F D F

B

cE E E E
K T

   
 
 

=
D

c

Nlog
N

 
 
 

 2EF =   B
D

Dc
c

NE E K T log
N

 
   

 

  EF =
 D B Dc

c

E E K T Nlog
2 2 N
  

  
 

... (4)

At T = 0 K.   EF =
 C DE E

2
 
 
 

... (5)

At T = 0 K. Thus, the Fermi level in N-type semiconductor lies exactly in
middle of the conduction level (EC) and donor level (ED).

This equation shows that the electron concentration in the conduction band is
proportional to the square root of the donor concentration.

2.13.1  Expression for the density of electrons in conduction
 band in terms of ND

As the temperature is increased more and more the donor atoms are ionized
and the fermi level drops. For a particular temperature all donor atoms are ionized,
further increase in temperature results in generation of electron hole pairs due to
breaking of covalent bonds and materials tends to behave in a intrinsic manner.

We know density of electrons in conduction band

   Ne =
3/ 2*

e B F C
2

B

(2 m K T) E E2 exp
h K T

   
  

   
... (1)
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Substituting the equation (4) in (1) we get

Ne = 

D
3/ 2*C D B

e B C
23/ 2*

e B
2

B

N
E E K T 2 m K Tlog E

22 2
h(2 m K T)2 exp

h K T

  
                       

   
   

= 
D3/ 2* 3/ 2*e B C D C

e B2
B2

N
(2 m K T) E E E1 2 m K T2 exp log

2h 2 2 K T
h

  
                            

= 

1/ 2
D3/ 2* 3/ 2*e B D C

e B2
B 2

N
(2 m K T) E E 2 m K T2 exp log

2h 2K T
h

  
                            

= 

1/ 2
D3/ 2* 3/ 4*e B D C

e B2 1/ 2
B 2

N
(2 m K T) E E2 exp log 2 m K T

h 2K T 2
h

  
                            

= 

1/ 2
D3/ 2* 3/ 4*e B D C

e B2 1/ 2
B 2

N
(2 m K T) E E2 exp 2 m K T

h 2K T 2
h

 
                      

=
3/ 2 3/ 4* *

1/ 2 D C e B e B
2 2

B
D

E E (2 m K T) (2 m K T)(2N ) exp
2K T h h


       
     

    

=  
3/ 4*

1/ 2 D C e B
2

B
D

E E (2 m K T)(2N ) exp
2K T h

    
   

  
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Here EC – ED = E is known as ionisation energy of donars i.e. E represents
the amount of energy required to transfer on an electron to from donor envergy level
(ED) to conduction band (EC)

3/ 4*
1/ 2 e B

e 2
B

D
(2 m K T)EN (2N ) exp

2K T h
   

    
  

2.14  VARIATION OF FERMI LEVEL WITH TEMPERATURE
 AND CONCENTRATION OF IMPURITIES IN P-TYPE
  SEMICONDUCTOR

1) When T = 0 K , 
 v A

F
E E

E
2

 
  
 

  i.e., at T = 0 K, the Fermi level lies at

mid way between the acceptor level and valence level.

2) When temperature increases, some of the electrons from valence band will
go to acceptor energy level [EA]. Therefore the Fermi level shifts upward.
At high temperature 500 K, the Fermi level reaches intrinsic level iE .

3) If the impurity atoms are increased from 1021 atoms /m3 to 1024 atoms / m3

the hole concentration increases and hence the Fermi level decrease.

Fig. 2.10 variation of Fermi level with Temperature and Concentration of
Impurities in P-type Semiconductor.
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2.15  VARIATION OF FERMI LEVEL WITH TEMPERATURE
  AND CONCENTRATION OF IMPURITIES IN N-TYPE
  SEMICONDUCTOR

1) When T = 0 K, 
 v D

F
E E

E
2

 
  
 

 i.e., at T = 0 K, the Fermi level lies at

mid way between the Donar level and valence level.
2) When temperature increases, some of the electrons moves from valence band

to Donar energy level [ED]. Therefore the Fermi level shifts upward.
At high temperature 500 K, the Fermi level reaches intrinsic level DE .

3) If the impurity atoms are increased from 1021 atoms /m3 to 1024 atoms / m3,
the electron concentration increases and hence the Fermi level decrease.

Fig. 2.11 variation of Fermi level with Temperature and
Concentration of Impurities in N-type Semiconductor.

2.16  HALL EFFECT
Measurement of conductivity will not determine whether the conduction is due

to electron or holes and therefore will not distinguish between p-type and n-type
semiconductor.

Therefore Hall Effect is used to distinguish between the two types of charge
carriers and their carrier densities and is used to determine the mobility of charge
carriers.

hp
Highlight
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2.16.1  Hall Effect

When conductor (metal or semiconductor) carrying a current is placed in a
transverse magnetic field, an electric field is produced inside the conductor in a direction
normal to both the current and the magnetic field. This phenomenon is known as
“Hall effect” and the generated voltage is called “Hall voltage”.

Fig 2.12 Hall effect

2.16.2  Hall Effect in n –type Semiconductor

Let us consider an n-type material to which the current is allowed to pass along
x-direction from left to right (electrons move from right to left) and the magnetic field
is applied in z-directions, as a result Hall voltage is produced in y direction.

Since the direction of current is from left to right the electrons moves from right
to left in x-direction as shown in Figure.

B

2

1

e F

j

y

Z X

-

Fig 2.13 Hall effect in N- type semiconductor



SEMICONDUCTING MATERIALS 2.33

Now due to the magnetic field applied the electrons move towards downward
direction with the velocity ‘v’ and cause the negative charge to accumulate at face (1)
of the material as shown Figure.

Therefore a potential difference is established between face (2) and face (1) of
the specimen which gives rise to field EH in the negative y direction.

Here, the force due to potential difference = – eEH ... (1)

Force due to magnetic field = – Bev ... (2)

At equilibrium eqn. (1)  = eqn. (2)

   – eEH = – Bev

EH = Bv ... (3)

We know the current density Jx in the x direction is

Jx = – ne  ev

v =
Jx

Nee ... (4)

Substituting eqn. (4) in eqn. (3) we get

EH = x

e

BJ
n e ... (5)

EH = RH Jx B ... (6)

Where ‘RH’ is known as the Hall coefficient, given by

RH = –(1/nee) ... (7)

The negative sign indicates that the field is developed in the negative ‘y’ direction.
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2.16.3  Hall Effect in p-type Semiconductor

Let us consider a p-type material for which the current is passed along x-direction
from left to right and magnetic field is applied along z-direction as shown in Figure
Since the direction of current is from left to right, the holes will also move in the same
direction.

F

j

y

Z X

B

2

1

h+

Fig 2.14 Hall effect in P- type semiconductor

Now due to the magnetic field applied, the holes move towards the downward
direction with velocity ‘v’ and accumulate at the face (1) as shown in Figure.

A potential difference is established between face (1) and (2) in the positive y
direction.

Force due to the potential difference = eEH ... (8)

[Since hole is considered to be an electron with same mass but positive charge
negative sign is not included].

At equilibrium eqn. (7) = eqn . (8)

eEH = Bev

EH = Bv

We known current density Jx =  nhev ... (9)

v =
h

xJ e
n

... (10)

Where nh is hole density
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Substituting eqn. (10) in (9) we get

  EH =
h

xBJ
n e

  EH = RHJxB ... (11)

Where   RH =
h

1
n e

Equation (11) represents the hall coefficient and the positive sign indicates that
the Hall field is developed in the positive y direction.

2.16.4  Hall Coefficient Interms of Hall Voltage

Half coefficient (RH) is defined as the Hall field developed per unit current density
per unit applied magnetic field.

If the thickness of the sample is‘t’ and the voltage developed is ‘VH’ then Hall
voltage

   VH = EHt ... (12)

Substituting eqn. (11) in eqn (12) we have

   VH = RHJx Bt ... (13)

   we know Current density Jx =  Ix

  Area of the specimen = xI
bt ... (14)

where b - is the breath of the sample

t - is the thickness of the sample

Substituting eqn. (14) in eqn (13) we get

   VH = H xR I Bt
bt

   VH = H xR I B
b

Hall coefficient    RH =
H

x

V b
I B
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2.16.5  Experimental Determination of Hall Effect

A semiconductor slab of thickness ‘t’ and breadth ‘b’ is taken and current is
passed using the battery as shown in Figure.

The slab is placed between the pole of an electromagnet so that current direction
coincides with x-axis and magnetic field coincides with z-axis. The hall voltage (VH) is measured
by placing two probes at the center of the top and bottom faces of the slab (y-axis).

b

d

Ba

V

A

H

z

y

x

Fig. 2.15 Experimental setup for Hall effect

If B is magnetic field applied and the VH is the Hall voltage produced, then the
Hall coefficient can be calculated from the formula

   RH = H

x

V b
I B ... (1)

Mobility of Charge Carriers
In general the hall co-efficient can be written as

   RH =
1

ne


... (2)

The above expression is valid only for conductors where the velocity is taken
as the drift velocity. But for semiconductors velocity is taken as average velocity so
RH for an ‘n’ type semiconductor is modified as

  RH =
ee

–3π 1
8 n

 
 
 

   RH =
e

–1.18
n e ... (3)
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We know the conductivity for n type is σ =n e μe

  μe =
σe
n ee

... (4)

Eqn. (3) can be rewritten as

1
n ee

= H–R
1.18 (5)

Substituting eqn. (5) in (4) we get,

μe = H– σ Re
1.18

... (6)

The mobility of electron is in an n-type semiconductor is

μe = Hσ V be–
1.18 I × B

H
H

V bR =
I B

 
  


Similarly for p-type Semiconductor, the mobility of hole is

μe =  
Hhσ V b

1.18 I × B ... (7)

Thus by finding hall voltage, hall coefficient can be calculated and thus the mobility
of the charge carriers can also be determined.

2.16.6  Application of Hall Effect

1. The sign (N-type (or ) P-type) of charge carriers can be determined.

2. The carrier concentration can be determined 
H

1.18n = 
qR

 
 
 

3. The mobility of charge carriers in measured directly HR = 
1.18
   

.

4. Electrical conductivity can be determined   = n q   .

5. It can be used to determine whether the given material is metal, insulator, or
semiconductor and the type of the semiconductor.

6. It can be used to determine the power flow in an electromagnetic wave.
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SOLVED PROBLEMS
1. Calculate the intrinsic concentration of charge carriers at 300 K given

that * *
e o h om =0.12m ,m =0.28m and the value of brand gap = 0.67 eV..

Solution:

Given:

    * 31 31 3
e om 0.12m 0.12 9.1 10 1.092 10 Kgm       

    * 31 31 3
h om 0.28m 0.28 9.1 10 2.548 10 Kgm       

  T300K.

Intrinsic carrier concentration is given by,

in =
3/ 2

g* * 3/ 4
e h2

B

E2 kT2 (m m ) exp
h 2K T

  
     

3 / 2

2
2 kT2

h
 

 
 

=

3 / 223

34
2  × 1.38 × 10  × 3002

6.626× 10





 
 
  

= 2 (1.4421 × 1070)

= 2.884 × 1070

 * * 3/4
e h(m m ) = (1.092 × 1031 × 2.548 × 10–31)3/4

= 6.813 × 10–47

g

B

E
exp

2K T
 

 
 

=
19

23
0.67 × 1.6 × 10exp

2 × 1.38 × 10  × 300





  
      

= exp  ( 12.9468)

= 2.3838 × 10–6

in = [1.442 × 1070] × 6.813 × 10–47 × 2.3836 × 10–6

= 2.3407 × 1018

    i
Intrinsic carrier

n
concentration





= 2.3407 × 1018 m–3
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2. The intrinsic carrier density is 1.5 × 1016 m–3. If the mobility of electron
and hole are 0.13 and 0.05 m2 V–1 s–1, calculate the conductivity.

(AU - NOV 2003)
Solution :
Given :

in =  1.5 × 1016 m–3

e = 0.13 m2 V–1 s–1

h = 0.05 m2 V–1 s–1

Conductivity  = ni e (e + h)

 = 1.5 × 1016 × 1.6 × 10–19 (0.13 + 0.05)

Conductivity  = 4.32 × 10–4 –1m–1

3. The Intrinsic carrier density at room temperature in Ge is 2.37 × 1019 m3

if the electron and hole mobilities are 0.38 and 0.18 m2 V–1 s–1 respectively,
calculate the resistivity.   (AU - OCT 2002, DEC 2010)

Solution:

Given:

ni = 2.37 × 1019 m3

e = 0.38 m2 V–1 s–1

h = 0.18 m2 V–1 s–1

Conductivity  = ni e (e + h)

= 2.37 × 1019 × 1.6 × 10–19 (0.38 + 0.18)

= 2.1235 –1 m–1

Resistivity  =
1


 =
1

2.1235

Resistivity  =   0.4709  m
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4. The Hall coefficient of certain silicon specimen was found to be
–7.35 × 10–5 m3 C–1 from 100 to 400 K.  Determine the nature of the
semiconductor.  If the conductivity was found to be 200 –1 m–1.  Calculate
the density and mobility of the charge carrier. (AU - NOV 2002, JUNE 2012)
Solution:
Given:

Conductivity  = 1 1200 m 

HHall co-efficient R = 5 3 17.35 10 m C   ... (1)
a) Density of electrons

n =
H

1
R e


(from equation (1))

n = 5 19
1

(7.35 10 1.609 10 )   

(i.e) = 22 38.455 × 10 m

We know Conductivity
    = en e 

b) Mobility

 = 22 19
200 =  

ne 8.455 × 10 1.6 10


 
= 0.0147

Mobility    = 2 1 10.0147m v s 

  22 3Density of electrons (n) = 8.053 × 10  m

  2 1 1Mobility ( ) 0.0147m v s  
5. In a P-type germanium, ni  = 2.1 × 1019 m–3density of boran 4.5 × 1023 atoms /m3.

The electron and hole mobility are 0.4 and 0.2 m2 v–1 s–1 respectively. What
is its conductivity before and after addition of boron atoms.

(AU - APRIL 2003)
Solution:
Given:

Intrinsic carrier concentration in = 2 .1 × 1019 m–3

Mobility of electrons e = 0.4 m2 v–1 s–1

Mobility of holes h = 0.2 m2 v–1 s–1
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a) Conductivity before the addition of boron atoms

 =  i e hn e  

=  19 192.1 10 1.6 10 0.4 0.2   

= 2.016 –1 m–1

b) Conductivity after the addition of boron atoms, Boron is a P-type
impurity atom

 = hp e 
= 4.5 × 1023 × 1.6 × 10–19 × 0.2

 = 14400 –1 m–1

6. An N-type semiconductor has hall coefficient = 4.16 × 10–4 m3 C–1. The
conductivity is 108 –1 m–1. Calculate its charge carrier density ‘ne’and
electron mobility at room temperature.  (AU - APRIL 2003)

Solution:

Given:
Hall Co-efficient RH = 4.16 × 10–4 m3 C1

Conductivity  = 108 m–1

1. For ‘n’ type the charge carriers density ne=e
H

1n  
R e


 Here the negative signindicates

the field direction alone.

   en =
H

3 1
8 R e
 

   en = 19 4
3  3.14 1

8 1.6 × 10 4.6 10 

  
       

en = 22 31.7690 × 10 m

2. Electron mobility    e = e

en e


=
 22 –19

108

1.7690 × 10 1.6 × 10
   e = 2 1 10.0381 m v s 
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7. In an N-type semiconductor, the concentration of electron is 2 × 1022 m–3 .
Its electrical conductivity is 112 –1 m–1. Calculate the mobility of electrons.

(AU - NOV 2005)
Solution:
Given:
Conductivity  = 112 –1 m–1

Carrier conerntration of electron

in  = 2 × 1022 m–3

Hall coefficient RH =
1
ne

= 22 19
1

2 × 10 1.6 × 10
= 3.125 × 10–4 m–3 C–1

Mobility  = RH = 112 × 3.125 × 10–4

= 0.035 m2 v–1 s–1

8. For an intrinsic Semiconductor with a band gap of 0.7 eV, determine the
position of EF at T = 300 K if m*h = 6m*e.    (AU - NOV 2003)

Solution:

Bandgap  Eg = 0.7 eV = 0.7 × 1.6 × 10–19V
T = 300 K

Fermi energy for an intrinsic semiconductor

EF =
*g h

F *
e

E 3KT mE log
2 4 m

 
   

  

EF =
19 23

6
e

0.7 1.6 × 10 3 × 1.38 × 10 300 log
2 4

     
   

      

= 6.1563 × 10–20 Joules

EF =
20

19
6.1563  10

1.6 × 10






Fermi energy level EF = 0.3847 eV
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9. A semiconducting crystal with 12 mm long, 5 mm wide and 1 mm thick has
a magnetic  density of 0.5 Wbm–2 applied from front to back perpendicular
to largest faces. When a current of 20 mA flows length wise through the
specimen, the voltage measured across its width is found to be 37μV .
What is the Hall coefficient of this semiconductor?(AU - DEC 2001, JUNE 2012)
Solution:
Given:

Hall voltage      VH = 37 V = 37 × 10–6 V

Breath of the material t = 1 mm = 1 × 10–3 m

Current IH = 20 mA = 20 × 10–3 A

Magnetic flow density

B = 0.5 Wbm–2

Hall coefficient   RH  = H

H

V t
I B

=
6 3

3
37 × 10 1  10

20 × 10 0.5

 


 


  RH = 3.7 × 10–6 C–1 m3

 Hall coefficient RH = 3.7 × 10–6 C–1 m3

10. Find the resistance of an intrinsic Ge rod 1 mm long, 1 mm wide and 1 mm
thick at 300 K.  the intrinsic carrier density 2.5 ×1019 m–3 is at 300 K and
the mobility of electron and hole are 0.39 and 0.19 m2 v–1 s–1.

(AU - APRIL 2003, JUNE 2012)
Solution:
Given:
Length of Ge rod l = 1mm = 1 × 10–3 m

Breath b = 1mm = 1 × 10–3 m

Thickness t = 1mm = 1 × 10–3 m

Intrinsic carrier concentration ni = 2.5 × 1019 m–3

Mobility of electron e = 0.39 m2 v–1 s–1

Mobility of hole h = 0.19 m2 v–1 s–1
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a) Conductivity

 =  i e hn e  

=  19 192.5 10 1.6 10 0.39 0.19   

 = 2.32 –1 m–1

b) Resistance

R = A


=  
3

3 3
1 × 10

2.32 × 1 ×10 1 10



 
 A b  t  

R = 431 

11. Hall coefficient of a specimen of depend silicon found to be 3.66 × 10–4 m3 C–1.
The resistivity of the specimen is 8.93 × 10–3 m.  Find the mobility and
density of the charge carriers.   (AU - APRIL 2004, DEC 2010)

Solution:

Hall coefficient RH = 3.66 × 10–4 m3 C–1

Resistivity  = 8.93 × 10–3 m

i) Density of holes

nh =
H

1
R e

= 4 19
1

3.66 × 10 1.6 × 10 

nh = 1.7076 × 1022 m–3

ii) Mobility of holes n
1
ne




= 3 22 19
1

8.93 × 10 1.7076 × 10 1.6 × 10  

n = 0.041 m2 V–1 s–1
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12. The intrinsic carrier density of a semiconductor is 2.1 × 1019 m–3. The electron
and hole mobilities are 0.4 and 0.2 m2 V–1 s–1 respectively. Calculate the conductivity.

Solution:

Given data:

Intrinsic carrier concentration ni = 2.1 × 1019 m–3

Mobility of electron e = 0.4 m2 V–1 s–1

Mobility of hole h = 0.2 m2 V–1 s–1

Conductivity  = nie (e + h)

= 2.1 × 1019 × 1.6 × 10–19 × (0.4 + 0.2)

Conductivity  = 2.016 –1 m–1

13. The electron mobility and hole mobility in Si are 0.135 m2 V–1 s–1 and
0.048 m2 V–1 s–1 respectively at room temperature. If the carrier concentration
is 1.5 × 1016 m–3. Calculate the resistivity of Si at room temperature.

(AU - JUNE 2009)
Solution:
Given data:

Carrier concentration ni = 1.5 × 1016 m–3

Mobility of electron e = 0.135 m2 V–1 s–1

Mobility of hole h = 0.048 m2 V–1 s–1

i) Electrical Conductivity 
 = nie (e + h)

= 1.5 ×1016 × 1.6×10–19 × (0.135+0.048)
 = 0.4392 × 10–3 –1 m–1

ii) Resistivity pf silicon

 =
1


= 3
1

0.4392 10
 = 2.2768  m
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SHORT QUESTIONS WITH ANSWER
1. What is semiconductor?   (AU - April 2002)

The materials in which the electrical conductivity lies between conductors and
insulators are called semiconductors. They have resistivity value between 10–4 to
0.5 m . The electrical conductivity of semiconductor increases, when we added
to impurities and by increasing the temperature and it is contrary to the metals.
They have negative temperature Coefficient of resistance and which are formed
by covalent bonds.

2. Distinguish between elemental semiconductors and Compound semiconductors

(AU - Dec 2003, June 2009, Nov 2012)

   S.No  Elemental semiconductors Compound semiconductors

1. These are made from single element. These are made from compound
(mixed) element.

2. These are made from IV group These are made from III and V
and VI group elements [or] II  and VI elements.

3. These are called as indirect band gap These are called as direct band
semiconductor (electron-hole gap semiconductor (electron-hole
recombination takes place through traps) recombination takes place directly)

4. Heat is produced in the recombination Photons are emitted during
recombination

5. Life time of charge carriers is more Life time of charge carriers is less
due to indirect recombination due to direct recombination.

6. Current amplification is more Current amplification is less.

7. These are used for making diodes, These are used for making LED,
transistor, etc. laser diodes, etc.

8. Example : Ge, Si Example : GaAs, GaP, CdS, MgO
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3. What are intrinsic semiconductors?

A semiconductor in which holes and electrons are created only by thermal excitation
across the energy gap is called an intrinsic semiconductor.  A pure crystal of
silicon or germanium is an intrinsic semiconductor. In an intrinsic semiconductor
the number of holes in the valence band is equal to number of electrons in the
conduction band. The Fermi level for an intrinsic semiconductor lies at midway in
the forbidden gap.

4. What is meant by compound semiconductor? Give an example.
(AU - Nov 2010, June 2011)

The compound Semiconductor is a semiconductor compound composed of
elements from two or more different groups of the periodic table.
i.e., III-V group, II-Vi group and IV-VI group.
Example: GaAs, GaP, CdS, MgO.

5. What are extrinsic semiconductors? (or) What is the effect of impurity
states over intrinsic semiconductor?

It is an impure semiconductor made by doping process thereby reducing the band
gap up to 0.01 eV.
In this case of N-type semiconductor, the donar energy level is very close to the
unfilled energy band (Conduction band). So it can easily donate an electron to
that unfilled state.
In this case of P-type semiconductor, the acceptor energy level is very close to
the filled energy band (Valance band). So it can easily accept the electrons from
the filled state.

6. Differentiate N-type and P-type semiconductor. (AU - Nov 2010, Dec 2009)

  S. No N-type P-type

1. It is donor type It is acceptor type

2. Impurity atom is pentavalent Impurity atom is trivalent

3. Donor level lies close to the bottom Acceptor level lies close to the
of the conduction band top of  the valence band.

4. Electrons are the majority carriers Holes are the majority carriers and
and holes are the minority carriers electrons are the minority carriers.
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7. Sketch  the variation of Fermi level in intrinisic semiconductor.

(AU - June 201)

1. At T = 0 K, the Fermi level lies exactly in midway between conduction band
and Valence band.

2. At T > 0 K, the Fermi level rises slightly upward since.

8. What are donor and acceptor impurities?

A semiconductor in which the impurity atoms are added by doping process is
called Extrinsic semiconductor. The addition of impurities increases the carrier
concentration and conductivity. There are two types of impurities.

1.  Donor impurity which leads to N-type semiconductor.

2.  Acceptor impurity which leads to P-type semiconductor.

Donor impurity means it donates the electron to the semiconductor materials and
Acceptor impurity means it ready to accepts an electron to form the covalent
bond in semiconductor materials.

9. State law of mass action.

Therefore for intrinsic semiconductor even it impurity is added to increase ne there
will be decrease in nh and hence the product ne nh will remain constant. This is
called Law of mass action.

 Ne Nh = ni
2
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10. Sketch the variation of Fermi level with temperature for various
concentration in P-type semiconductor.    (AU - June 2009)

1) When T = 0 K,  
 v A

F
E E

E
2

 
  
 

 i.e., at T = 0 K, the Fermi level lies at

mid way between the acceptor level and valence level.
2) When temperature increases, some of the electrons from valence band will go

to acceptor energy level [EA].  Therefore the Fermi level shifts upward. At high
temperature 500 K, the Fermi level reaches intrinsic level Ei.

3) If the impurity atoms are increased from 21 310 atoms / m  to 24 310 atoms / m ,
the hole concentration increases and hence the Fermi level decrease.

11. Sketch the variation of Fermi level with temperature for various
concentration in N-type semiconductor.    (AU - June 2010)

1) When T = 0 K,  
 v A

F
E E

E
2

 
  
 

 i.e., at T = 0 K, the Fermi level lies at

mid way between the acceptor level and valence level.
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2) When temperature increases, some of the electrons from valence band will go
to acceptor energy level [EA].  Therefore the Fermi level shifts upward. At high
temperature 500 K, the Fermi level reaches intrinsic level Ei.

3) If the impurity atoms are increased from 21 310 atoms / m  to 24 310 atoms / m ,
the hole concentration increases and hence the Fermi level decrease.

12. What is pair production or generation?

When an energy is supplied to the semiconductor, the covalent bonds are broken
and the electrons are raised from valence band to conduction band and a vacant
site is created in the valence band.  It is called pair production or generation of
electron-hole pair.

13. What is Recombination?

Recombination is the conversion of a free electron into a bound electron by
occupying a vacant site. An electron jumps from the conduction band to the valence
band vacant site is called as band to band recombination of electron-hole pair.

During band to band combination the excess energy is released in the form of light
photon. The recombination also occurs via recombination centre and traps.

14. Define Hall effect? (AU - May 2004, 2007,  Dec 2009, June 2009)

If a semiconductor or a conductor carrying current (I) is placed in a magnetic
field (B), an electric field is produced in the direction normal to both the current
and magnetic field.  The generated voltage is called the Hall voltage (VH) and the
field is called Hall field(EH).

15. What are the applications of hall effect?   (AU - June 2010, 2012)
1. The sign (N-type (or ) P-type) of charge carriers can be determined.

2. The carrier concentration can be determined 
H

1.18n = 
qR

 
 
 

3. The mobility of charge carriers in measured directly HR = 
1.18
   

.

4. Electrical conductivity can be determined   = n q   .
5. It can be used to determine whether the given material is metal, insulator, or

semiconductor and the type of the semiconductor.
6. It can be used to determine the power flow in an electromagnetic wave.
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16. Give on externisic semiconductor. How will you find whether it is n-type
(or) P type.    (AU - June 2010, 2012)

If pentavalent (Phosphorous, Arsenic, Antimony) impurities are doped with pure
semiconducting material the free electrons are produced, this is called n-type
semiconductor. In n-type semiconductor majority charge carriers is electron.
If trivalent [Aluminium, Gallium, Indium] impurities are doped with pure
semiconducting material the holes are produced, this is called p - type
semiconductor. In p - type semiconductor the majority charge carrier is holes.

17. Define diffusion current
In addition to drift current, there is also another current called diffusion current.
Diffusion current does not takes place in metals.
Diffusion current is defined as the motion of charge carriers from the region of
higher concentration to the region of lower concentration.

18. State the properties of Semiconductors.  (AU - May 2003, June 2010)

1. They are formed by covalent bonds.
2. They have small energy gap.
3. They have an empty conduction band and almost filled valence band 0K.
4. They have negative temperature coefficient of resistance.
5. They resistivity of semiconductors lies between a semiconductor and Insulator.

(10–4 to 0.5 Ohms m).
6. At 0 K it behave as insulator.

19. What are the differences between conductor and a semiconductor?

  S.No Conductor Semiconductor

1. The conductor is a The semiconductor is a material which has
material which has resistivity lying between the conductor and
low resistivity an insulator.

2. They will not behave The pure form of semiconductor can
as an insulator at any behave as an insulator at 0K.
temperature.

3. They have positive They have negative temperature coefficient
coefficient of resistance of resistance.
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20. Why do we prefer silicon for transistor and Ga As for Laser diodes?
(AU - June 2009)

Silicon in an indirect band gap semiconductor for which the life time of  the charge
carriers is more and the current amplification is also very high. Hence it is preferable
for use it in transistor.
Ga As is a direct band gap semiconductor, in which electrons and holes recombine
directly to produce photons and hence used in laser diodes.

21. What happens when the temperature increase in the case of semiconductor
and conductor?    (AU - June 2010)
With increase of temperature the conductivity of semiconductor increase and hence
resistivity decrease because more and more charge carriers are created by the temperature.

22. Write the expression for electrical conductivity of an intrinsic semiconductor.
(AU - Dec 2012)

Electrical conductivity   nie (µe + µh)
Where ni   - is the intrinsic carrier concentration

µe   - is the mobility of electrons
µh   - is he mobility of holes

23. Give the carrier concentration of an intrinsic semiconductor. (AU - Jun 2010)

The carrier concentration A an intrinsic semiconductor is

ni =  
3
2 3/ 4* *B

e h2

2 k T2 m m
h
 

 
 

Eg
Be / 2K T

24. Write the expression for energy gap (Eg) of an intrinsic semiconductor.
(AU - May 2011)

Energy gap of a semiconductor Eg = B
dy2K
dx

 
 
 

dy
dx

 
 
 

 - is the slope of the curve
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PART - B QUESTIONS
1. Assuming Fermi-Dirac statistics, derive expressions for the density of electrons

and holes in an intrinsic semiconductor.  Hence, obtain expression for the electrical
conductivity of the intrinsic semiconductor.    (AU - April 2002)

2. Derive an expression for,

i) Density of electrons in the conduction band in an intrinsic semiconductor.

ii) Density of holes in the valance band in an intrinsic semiconductor.

3. Describe the method of determining the band gap of a semiconductor.  How does
the electrical conductivity vary with temperature for an intrinsic semiconductor.

(AU - Nov 2003)

4. Obtain an expression for, density of electrons in the conduction band of an
N-type semiconductor and density of holes in the conduction band of an P-type
semiconductor by assuming Fermi-Dirac distribution function.(AU - May 2004)

5. Discuss the variation of carrier concentration with temperature in n-type
semiconductor.

6. Derive an expression in intrinsic semiconductor.

7. i) Derive an expression for the carrier concentration in intrinsic semiconductor.

ii) Explain the variation of electrical conductivity with respect to temperature in
the case of an intrinsic semiconductor.   (AU - June 2006)

8. Describe a method of determining the band gap energy of a semiconductor.

9. Derive an expression for carrier concentration with temperature N-type
semiconductor, and describe an experimental set-up for the determination of Hall
Co-efficient and Hall voltage. (AU - May 2004)

10. Explain the variation of Fermi level wit     (AU - June 2006)

11. Explain the variation of Fermi level with temperature and impurity concentration
in N-type semiconductor.

12. What is Hall effect? Describe an experiment for the measurement of Hall
coefficient, and write its applications.     (AU -  May 2007)

13. Derive an expression for density of holes in the valance band and also explain
how does the Fermi level vary with concentration of impurities in P-type
semiconductor.   (AU - June 2006)
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ASSIGNMENT PROBLEMS
1. Find the resistance of an intrinsic germanium rod 1 cm long, 1mm wide and 1mm thick

at 300 K. the intrinsic carrier density is 2.5 × 1019 / m–3 at 300 K and the mobility of
electron and hole are 0.39 and 0.19 m2 V–1 S–1. (Ans: 4.31 × 103 )

2. Calculate the  position of Fermi level EF  and the conductivity at 300 K for germanium
crystal containing 5 × 1022 arsenic atoms / m3. Also calculate the conductivity if the
mobility of the electron is 0.39 m2 V–1 S–1.

(Ans : EF is 0.16 eV below Ec = 3210 –1 m–1)

3. In a Hall experiment a current of 25 A is passed through a long foil of silver which is
0.1mm thick and 3cm wide. If the magnetic field of flux density 0.14 Wb/m2 is
applied perpendicular to the foil, calculate the Hall voltage development and estimate
the mobility of electrons in silver. The conductivity the Hall coefficient is
(–8.4 × 10–11)m3 / coulomb. (Ans : 29.4 V and 57.7 × 10–4 m2 V–1)

4. The intrinsic carrier density at room temperature in Ge is 2.37 × 1019 m3. If the electron
and hole motilities are 0.38 and 0.18 m2 V1 S1 respectively, calculate the resistivity.

(Ans : 0471 m)

5. For silicon semiconductor with band gap1.12 eV, determine the position of the
Fermi level at 300 K, if * *

e 0 h 0m 0.12m  and m 0.28m  (Ans : 0.576 eV)

6. For an intrinsic semiconductor with gap width Eg = 0.7 eV, calculate the concentration
of intrinsic charge carriers at 300 K assuming that * *

e h 0m m m  .

(Ans : 33.49 × 1018 / m3)

7. A silicon plate of thickness 1mm, breadth 10mm, and length 100mm is placed magnetic
field of 0.5 wb/m2 acting perpendicular to its thickness.  If A 10–2 current flows along
its length, calculate the Hall voltage developed if the Hall coefficient is
3.66 × 10–4 m3 / coulomb. (Ans : 3.7 × 106 C–1 m3)

8. A N-type semiconductor has Hall coefficient = 4.16 × 10–4 C–1  m3. The conductivity
is 108 ohm–1 m–1. Calculate its charge carrier density and electron mobility at room
temperature. (Ans : 0.038 m2 V–1 S–1)
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PN Junction Diode
A PN-junction diode is formed when a p-type semiconductor is fused to an n-type semiconductor

creating a potential barrier voltage across the diode junction

The effect described in the previous tutorial is achieved without any external voltage being applied to the

actual PN junction resulting in the junction being in a state of equilibrium.

However, if we were to make electrical connections at the ends of both the N-type and the P-type materials

and then connect them to a battery source, an additional energy source now exists to overcome the potential

barrier.

The effect of adding this additional energy source results in the free electrons being able to cross the

depletion region from one side to the other. The behaviour of the PN junction with regards to the potential

barrier’s width produces an asymmetrical conducting two terminal device, better known as the PN Junction

Diode.

A PN Junction Diode is one of the simplest semiconductor devices around, and which has the characteristic of

passing current in only one direction only. However, unlike a resistor, a diode does not behave linearly with

respect to the applied voltage as the diode has an exponential current-voltage ( I-V ) relationship and

therefore we can not described its operation by simply using an equation such as Ohm’s law.

PN Junction Diode

https://www.electronics-tutorials.ws/register
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/category/diode
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If a suitable positive voltage (forward bias) is applied between the two ends of the PN junction, it can supply

free electrons and holes with the extra energy they require to cross the junction as the width of the depletion

layer around the PN junction is decreased.

By applying a negative voltage (reverse bias) results in the free charges being pulled away from the junction

resulting in the depletion layer width being increased. This has the effect of increasing or decreasing the

effective resistance of the junction itself allowing or blocking current �ow through the diode.

Then the depletion layer widens with an increase in the application of a reverse voltage and narrows with an

increase in the application of a forward voltage. This is due to the differences in the electrical properties on

the two sides of the PN junction resulting in physical changes taking place. One of the results produces

recti�cation as seen in the PN junction diodes static I-V (current-voltage) characteristics. Recti�cation is

shown by an asymmetrical current �ow when the polarity of bias voltage is altered as shown below.

Junction Diode Symbol and Static I-V Characteristics

But before we can use the PN junction as a practical device or as a rectifying device we need to �rstly bias the

junction, ie connect a voltage potential across it. On the voltage axis above, “Reverse Bias” refers to an

external voltage potential which increases the potential barrier. An external voltage which decreases the

potential barrier is said to act in the “Forward Bias” direction.

There are two operating regions and three possible “biasing” conditions for the standard Junction Diode and

these are:

1. Zero Bias – No external voltage potential is applied to the PN junction diode.

2. Reverse Bias – The voltage potential is connected negative, (-ve) to the P-type material

and positive, (+ve) to the N-type material across the diode which has the effect of Increasing
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the PN junction diode’s width.

3. Forward Bias – The voltage potential is connected positive, (+ve) to the P-type material

and negative, (-ve) to the N-type material across the diode which has the effect of Decreasing

the PN junction diodes width.

Zero Biased Junction Diode

When a diode is connected in a Zero Bias condition, no external potential energy is applied to the PN junction.

However if the diodes terminals are shorted together, a few holes (majority carriers) in the P-type material

with enough energy to overcome the potential barrier will move across the junction against this barrier

potential. This is known as the “Forward Current” and is referenced as I

Likewise, holes generated in the N-type material (minority carriers), �nd this situation favourable and move

across the junction in the opposite direction. This is known as the “Reverse Current” and is referenced as I .

This transfer of electrons and holes back and forth across the PN junction is known as diffusion, as shown

below.

Zero Biased PN Junction Diode

The potential barrier that now exists discourages the diffusion of any more majority carriers across the

junction. However, the potential barrier helps minority carriers (few free electrons in the P-region and few

holes in the N-region) to drift across the junction.

Then an “Equilibrium” or balance will be established when the majority carriers are equal and both moving in

opposite directions, so that the net result is zero current �owing in the circuit. When this occurs the junction

is said to be in a state of “Dynamic Equilibrium“.

The minority carriers are constantly generated due to thermal energy so this state of equilibrium can be

broken by raising the temperature of the PN junction causing an increase in the generation of minority

carriers, thereby resulting in an increase in leakage current but an electric current cannot �ow since no circuit

F

R
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has been connected to the PN junction.

Reverse Biased PN Junction Diode

When a diode is connected in a Reverse Bias condition, a positive voltage is applied to the N-type material and

a negative voltage is applied to the P-type material.

The positive voltage applied to the N-type material attracts electrons towards the positive electrode and

away from the junction, while the holes in the P-type end are also attracted away from the junction towards

the negative electrode.

The net result is that the depletion layer grows wider due to a lack of electrons and holes and presents a high

impedance path, almost an insulator. The result is that a high potential barrier is created thus preventing

current from �owing through the semiconductor material.

Increase in the Depletion Layer due to Reverse Bias

This condition represents a high resistance value to the PN junction and practically zero current �ows

through the junction diode with an increase in bias voltage. However, a very small leakage current does �ow

through the junction which can be measured in micro-amperes, ( μA ).

One �nal point, if the reverse bias voltage Vr applied to the diode is increased to a suf�ciently high enough

value, it will cause the diode’s PN junction to overheat and fail due to the avalanche effect around the junction.

This may cause the diode to become shorted and will result in the �ow of maximum circuit current, and this

shown as a step downward slope in the reverse static characteristics curve below.

Reverse Characteristics Curve for a Junction Diode
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Sometimes this avalanche effect has practical applications in voltage stabilising circuits where a series limiting

resistor is used with the diode to limit this reverse breakdown current to a preset maximum value thereby

producing a �xed voltage output across the diode. These types of diodes are commonly known as Zener

Diodes and are discussed in a later tutorial.

Forward Biased PN Junction Diode

When a diode is connected in a Forward Bias condition, a negative voltage is applied to the N-type material

and a positive voltage is applied to the P-type material. If this external voltage becomes greater than the value

of the potential barrier, approx. 0.7 volts for silicon and 0.3 volts for germanium, the potential barriers

opposition will be overcome and current will start to �ow.

This is because the negative voltage pushes or repels electrons towards the junction giving them the energy to

cross over and combine with the holes being pushed in the opposite direction towards the junction by the

positive voltage. This results in a characteristics curve of zero current �owing up to this voltage point, called

the “knee” on the static curves and then a high current �ow through the diode with little increase in the

external voltage as shown below.

Forward Characteristics Curve for a Junction Diode
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The application of a forward biasing voltage on the junction diode results in the depletion layer becoming very

thin and narrow which represents a low impedance path through the junction thereby allowing high currents

to �ow. The point at which this sudden increase in current takes place is represented on the static I-V

characteristics curve above as the “knee” point.

Reduction in the Depletion Layer due to Forward Bias

This condition represents the low resistance path through the PN junction allowing very large currents to �ow

through the diode with only a small increase in bias voltage. The actual potential difference across the

junction or diode is kept constant by the action of the depletion layer at approximately 0.3v for germanium

and approximately 0.7v for silicon junction diodes.

Since the diode can conduct “in�nite” current above this knee point as it effectively becomes a short circuit,

therefore resistors are used in series with the diode to limit its current �ow. Exceeding its maximum forward

current speci�cation causes the device to dissipate more power in the form of heat than it was designed for

resulting in a very quick failure of the device.

Junction Diode Summary

The PN junction region of a Junction Diode has the following important characteristics:
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Semiconductors contain two types of mobile charge carriers, “Holes” and “Electrons”.

The holes are positively charged while the electrons negatively charged.

A semiconductor may be doped with donor impurities such as Antimony (N-type doping), so

that it contains mobile charges which are primarily electrons.

A semiconductor may be doped with acceptor impurities such as Boron (P-type doping), so

that it contains mobile charges which are mainly holes.

The junction region itself has no charge carriers and is known as the depletion region.

The junction (depletion) region has a physical thickness that varies with the applied voltage.

When a diode is Zero Biased no external energy source is applied and a natural Potential

Barrier is developed across a depletion layer which is approximately 0.5 to 0.7v for silicon

diodes and approximately 0.3 of a volt for germanium diodes.

When a junction diode is Forward Biased the thickness of the depletion region reduces and

the diode acts like a short circuit allowing full current to �ow.

When a junction diode is Reverse Biased the thickness of the depletion region increases

and the diode acts like an open circuit blocking any current �ow, (only a very small leakage

current).

We have also seen above that the diode is two terminal non-linear device whose I-V characteristic are polarity

dependent as depending upon the polarity of the applied voltage, V  the diode is either Forward Biased,

V  > 0 or Reverse Biased, V  < 0. Either way we can model these current-voltage characteristics for both an

ideal diode and for a real silicon diode as shown:

Junction Diode Ideal and Real Characteristics

D

D D
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In the next tutorial about diodes, we will look at the small signal diode sometimes called a switching diode

which is used in general electronic circuits. As its name implies, the signal diode is designed for low-voltage or

high frequency signal applications such as in radio or digital switching circuits.

Signal diodes, such as the 1N4148 only pass very small electrical currents as opposed to the high-current

mains recti�cation diodes in which silicon diodes are usually used. Also in the next tutorial we will examine the

Signal Diode static current-voltage characteristics curve and parameters.
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The Zener Diode

However, the Zener Diode or “Breakdown Diode”, as they are sometimes referred too, are basically the same

as the standard PN junction diode but they are specially designed to have a low and speci�ed Reverse

Breakdown Voltage which takes advantage of any reverse voltage applied to it.

https://www.electronics-tutorials.ws/register
https://www.electronics-tutorials.ws/
https://www.electronics-tutorials.ws/category/diode
https://www.arrow.com/en/products/raspberrypi4-4gb/raspberry-pi-foundation?utm_source=aspencore&utm_medium=display&utm_term=raspberrypi4_eetimes_q220&utm_content=eetimes-asp-display&utm_campaign=arrow_raspberrypi4_q220_global
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The Zener diode behaves just like a normal general-purpose diode consisting of a silicon PN junction and

when biased in the forward direction, that is Anode positive with respect to its Cathode, it behaves just like a

normal signal diode passing the rated current.

However, unlike a conventional diode that blocks any �ow of current through itself when reverse biased, that

is the Cathode becomes more positive than the Anode, as soon as the reverse voltage reaches a pre-

determined value, the zener diode begins to conduct in the reverse direction.

This is because when the reverse voltage applied across the zener diode exceeds the rated voltage of the

device a process called Avalanche Breakdown occurs in the semiconductor depletion layer and a current starts

to �ow through the diode to limit this increase in voltage.

The current now �owing through the zener diode increases dramatically to the maximum circuit value (which

is usually limited by a series resistor) and once achieved, this reverse saturation current remains fairly

constant over a wide range of reverse voltages. The voltage point at which the voltage across the zener diode

becomes stable is called the “zener voltage”, ( Vz ) and for zener diodes this voltage can range from less than

one volt to a few hundred volts.

The point at which the zener voltage triggers the current to �ow through the diode can be very accurately

controlled (to less than 1% tolerance) in the doping stage of the diodes semiconductor construction giving the

diode a speci�c zener breakdown voltage, ( Vz ) for example, 4.3V or 7.5V. This zener breakdown voltage on the

I-V curve is almost a vertical straight line.

Zener Diode I-V Characteristics

The Zener Diode is used in its “reverse bias” or reverse breakdown mode, i.e. the diodes anode connects to the

negative supply. From the I-V characteristics curve above, we can see that the zener diode has a region in its

reverse bias characteristics of almost a constant negative voltage regardless of the value of the current
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�owing through the diode.

This voltage remains almost constant even with large changes in current providing the zener diodes current

remains between the breakdown current I  and its maximum current rating I .

This ability of the zener diode to control itself can be used to great effect to regulate or stabilise a voltage

source against supply or load variations. The fact that the voltage across the diode in the breakdown region is

almost constant turns out to be an important characteristic of the zener diode as it can be used in the simplest

types of voltage regulator applications.

The function of a voltage regulator is to provide a constant output voltage to a load connected in parallel with

it in spite of the ripples in the supply voltage or variations in the load current. A zener diode will continue to

regulate its voltage until the diodes holding current falls below the minimum I  value in the reverse

breakdown region.

The Zener Diode Regulator

Zener Diodes can be used to produce a stabilised voltage output with low ripple under varying load current

conditions. By passing a small current through the diode from a voltage source, via a suitable current limiting

resistor (R ), the zener diode will conduct suf�cient current to maintain a voltage drop of Vout.

We remember from the previous tutorials that the DC output voltage from the half or full-wave recti�ers

contains ripple superimposed onto the DC voltage and that as the load value changes so to does the average

output voltage. By connecting a simple zener stabiliser circuit as shown below across the output of the

recti�er, a more stable output voltage can be produced.

Zener Diode Regulator

Resistor, R  is connected in series with the zener diode to limit the current �ow through the diode with the

voltage source, V  being connected across the combination. The stabilised output voltage V  is taken from

across the zener diode.

The zener diode is connected with its cathode terminal connected to the positive rail of the DC supply so it is

reverse biased and will be operating in its breakdown condition. Resistor R  is selected so to limit the

maximum current �owing in the circuit.

Z(min) Z(max)

Z(min)

S

S

S out

S
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With no load connected to the circuit, the load current will be zero, ( I  = 0 ), and all the circuit current passes

through the zener diode which in turn dissipates its maximum power. Also a small value of the series resistor

R  will result in a greater diode current when the load resistance R  is connected and large as this will

increase the power dissipation requirement of the diode so care must be taken when selecting the

appropriate value of series resistance so that the zener’s maximum power rating is not exceeded under this

no-load or high-impedance condition.

The load is connected in parallel with the zener diode, so the voltage across R  is always the same as the zener

voltage, ( V  = V  ). There is a minimum zener current for which the stabilisation of the voltage is effective

and the zener current must stay above this value operating under load within its breakdown region at all

times. The upper limit of current is of course dependant upon the power rating of the device. The supply

voltage V  must be greater than V .

One small problem with zener diode stabiliser circuits is that the diode can sometimes generate electrical

noise on top of the DC supply as it tries to stabilise the voltage. Normally this is not a problem for most

applications but the addition of a large value decoupling capacitor across the zener’s output may be required

to give additional smoothing.

Then to summarise a little. A zener diode is always operated in its reverse biased condition. As such a simple

voltage regulator circuit can be designed using a zener diode to maintain a constant DC output voltage across

the load in spite of variations in the input voltage or changes in the load current.

The zener voltage regulator consists of a current limiting resistor R  connected in series with the input

voltage V  with the zener diode connected in parallel with the load R  in this reverse biased condition. The

stabilised output voltage is always selected to be the same as the breakdown voltage V  of the diode.

Zener Diode Example No1

A 5.0V stabilised power supply is required to be produced from a 12V DC power supply input source. The

maximum power rating P  of the zener diode is 2W. Using the zener regulator circuit above calculate:

a). The maximum current �owing through the zener diode.

b). The minimum value of the series resistor, R

c). The load current I  if a load resistor of 1kΩ is connected across the zener diode.

L

S L

L

R Z

S Z

S

S L

Z

Z

S

L
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d). The zener current I  at full load.

Zener Diode Voltages

As well as producing a single stabilised voltage output, zener diodes can also be connected together in series

along with normal silicon signal diodes to produce a variety of different reference voltage output values as

shown below.

Zener Diodes Connected in Series

The values of the individual Zener diodes can be chosen to suit the application while the silicon diode will

always drop about 0.6 – 0.7V in the forward bias condition. The supply voltage, Vin must of course be higher

than the largest output reference voltage and in our example above this is 19v.

A typical zener diode for general electronic circuits is the 500mW, BZX55 series or the larger 1.3W, BZX85

series were the zener voltage is given as, for example, C7V5 for a 7.5V diode giving a diode reference number

of BZX55C7V5.

The 500mW series of zener diodes are available from about 2.4 up to about 100 volts and typically have the

same sequence of values as used for the 5% (E24) resistor series with the individual voltage ratings for these

small but very useful diodes are given in the table below.

Zener Diode Standard Zener Voltages

BZX55 Zener Diode Power Rating 500mW

Z
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2.4V 2.7V 3.0V 3.3V 3.6V 3.9V 4.3V 4.7V

5.1V 5.6V 6.2V 6.8V 7.5V 8.2V 9.1V 10V

11V 12V 13V 15V 16V 18V 20V 22V

24V 27V 30V 33V 36V 39V 43V 47V

BZX85 Zener Diode Power Rating 1.3W

3.3V 3.6V 3.9V 4.3V 4.7V 5.1V 5.6 6.2V

6.8V 7.5V 8.2V 9.1V 10V 11V 12V 13V

15V 16V 18V 20V 22V 24V 27V 30V

33V 36V 39V 43V 47V 51V 56V 62V

Zener Diode Clipping Circuits

Thus far we have looked at how a zener diode can be used to regulate a constant DC source but what if the

input signal was not steady state DC but an alternating AC waveform how would the zener diode react to a

constantly changing signal.

Diode clipping and clamping circuits are circuits that are used to shape or modify an input AC waveform (or

any sinusoid) producing a differently shape output waveform depending on the circuit arrangement. Diode

clipper circuits are also called limiters because they limit or clip-off the positive (or negative) part of an input

AC signal. As zener clipper circuits limit or cut-off part of the waveform across them, they are mainly used for

circuit protection or in waveform shaping circuits.

For example, if we wanted to clip an output waveform at +7.5V, we would use a 7.5V zener diode. If the output

waveform tries to exceed the 7.5V limit, the zener diode will “clip-off” the excess voltage from the input

producing a waveform with a �at top still keeping the output constant at +7.5V. Note that in the forward bias

condition a zener diode is still a diode and when the AC waveform output goes negative below -0.7V, the zener

diode turns “ON” like any normal silicon diode would and clips the output at -0.7V as shown below.

Square Wave Signal
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The back to back connected zener diodes can be used as an AC regulator producing what is jokingly called a

“poor man’s square wave generator”. Using this arrangement we can clip the waveform between a positive

value of +8.2V and a negative value of -8.2V for a 7.5V zener diode.

So for example, if we wanted to clip an output waveform between two different minimum and maximum

values of say, +8V and -6V, we would simply use two differently rated zener diodes. Note that the output will

actually clip the AC waveform between +8.7V and -6.7V due to the addition of the forward biasing diode

voltage.

In other words a peak-to-peak voltage of 15.4 volts instead of expected 14 volts, as the forward bias volt drop

across the diode adds another 0.7 volts in each direction.

This type of clipper con�guration is fairly common for protecting an electronic circuit from over voltage. The

two zener’s are generally placed across the power supply input terminals and during normal operation, one of

the zener diodes is “OFF” and the diodes have little or no affect. However, if the input voltage waveform

exceeds its limit, then the zener’s turn “ON” and clip the input to protect the circuit.

In the next tutorial about diodes, we will look at using the forward biased PN junction of a diode to produce

light. We know from the previous tutorials that when charge carriers move across the junction, electrons

combine with holes and energy is lost in the form of heat, but also some of this energy is dissipated as photons

but we can not see them.

If we place a translucent lens around the junction, visible light will be produced and the diode becomes a light

source. This effect produces another type of diode known commonly as the Light Emitting Diode which takes

advantage of this light producing characteristic to emit light (photons) in a variety of colours and wavelengths.
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