Class: B. Tech (Unit I)

I have taken all course materials for Unit I from Book Introduction to Electrodynamics by
David J. Griffith (Prentice- Hall of India Private limited).

Students can download this book form given web address;

Web Address : https://b-ok.cc/book/5103011/55¢730

All topics of unit I (vector calculus & Electrodynamics) have been taken from Chapter 1,

Chapter 7 & Chapter 8 from said book ( https://b-ok.cc/book/5103011/55¢730 ). I am sending

pdf file of Chapter 1 Chapter 7 & chapter 8.

Unit-I: Vector Calculus & Electrodynamics: (8 Hours)

Gradient, Divergence, curl and their physical significance. Laplacian in rectangular, cylindrical
and spherical coordinates, vector integration, line, surface and volume integrals of vector fields,
Gauss-divergence theorem, Stoke's theorem and Green Theorem of vectors. Maxwell
equations, electromagnetic wave in free space and its solution in one dimension, energy and

momentum of electromagnetic wave, Poynting vector, Problems.



CHAPTER

Vector Analysis

1.1 B VECTOR ALGEBRA

1.1.1 B Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have
gone a total of 7 miles, but you’re not 7 miles from where you set out—you’re
only 5. We need an arithmetic to describe quantities like this, which evidently do
not add in the ordinary way. The reason they don’t, of course, is that displace-
ments (straight line segments going from one point to another) have direction
as well as magnitude (length), and it is essential to take both into account when
you combine them. Such objects are called vectors: velocity, acceleration, force
and momentum are other examples. By contrast, quantities that have magnitude
but no direction are called scalars: examples include mass, charge, density, and
temperature.

I shall use boldface (A, B, and so on) for vectors and ordinary type for scalars.
The magnitude of a vector A is written |A| or, more simply, A. In diagrams, vec-
tors are denoted by arrows: the length of the arrow is proportional to the magni-
tude of the vector, and the arrowhead indicates its direction. Minus A (—A) is a
vector with the same magnitude as A but of opposite direction (Fig. 1.2). Note that
vectors have magnitude and direction but not location: a displacement of 4 miles
due north from Washington is represented by the same vector as a displacement 4
miles north from Baltimore (neglecting, of course, the curvature of the earth). On
a diagram, therefore, you can slide the arrow around at will, as long as you don’t
change its length or direction.

We define four vector operations: addition and three kinds of multiplication.
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(i) Addition of two vectors. Place the tail of B at the head of A; the sum,
A + B, is the vector from the tail of A to the head of B (Fig. 1.3). (This rule
generalizes the obvious procedure for combining two displacements.) Addition is
commutative:

A+B=B+A;

3 miles east followed by 4 miles north gets you to the same place as 4 miles north
followed by 3 miles east. Addition is also associative:

A+B)+C=A+B+0).
To subtract a vector, add its opposite (Fig. 1.4):
A—B=A+(—B).

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar
a multiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is
negative, the direction is reversed.) Scalar multiplication is distributive:

a(A + B) = aA + aB.
(iii) Dot product of two vectors. The dot product of two vectors is defined by
A-B= ABcos?b, (1.1)

where 0 is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A - B
is itself a scalar (hence the alternative name scalar product). The dot product is
commutative,

A-B=B A,
and distributive,

A-B+C)=A-B+A-C. (1.2)

Geometrically, A - B is the product of A times the projection of B along A (or
the product of B times the projection of A along B). If the two vectors are parallel,
then A - B = AB. In particular, for any vector A,

A-A=A2 (1.3)

If A and B are perpendicular, then A - B = 0.
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Example 1.1. Let C = A — B (Fig. 1.7), and calculate the dot product of C with
itself.

Solution
C.C=(A-B)-A-B)=A-A-A-B-B-A+B.B,
or
C? = A’ 4 B> —2AB cos¥.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is de-
fined by

A xB = ABsindh, (1.4)

where n is a unit vector (vector of magnitude 1) pointing perpendicular to the
plane of A and B. (I shall use a hat (") to denote unit vectors.) Of course, there
are two directions perpendicular to any plane: “in” and “out.” The ambiguity is
resolved by the right-hand rule: let your fingers point in the direction of the first
vector and curl around (via the smaller angle) toward the second; then your thumb
indicates the direction of n. (In Fig. 1.8, A x B points info the page; B x A points
out of the page.) Note that A x B is itself a vector (hence the alternative name
vector product). The cross product is distributive,

AxB+C)=(AxB)+ (A xC(C), (1.5)

but not commutative. In fact,

(B xA) =—(A xB). (1.6)
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FIGURE 1.7 FIGURE 1.8

Geometrically, |A x B| is the area of the parallelogram generated by A and B
(Fig. 1.8). If two vectors are parallel, their cross product is zero. In particular,

AxA=0

for any vector A. (Here 0 is the zero vector, with magnitude 0.)

Problem 1.1 Using the definitions in Eqgs. 1.1 and 1.4, and appropriate diagrams,
show that the dot product and cross product are distributive,

a) when the three vectors are coplanar;

! b) in the general case.

Problem 1.2 Is the cross product associative?
(AxB)x C=Ax (BxC).

If so, prove it; if not, provide a counterexample (the simpler the better).

1.1.2 M Vector Algebra: Component Form

In the previous section, I defined the four vector operations (addition, scalar mul-
tiplication, dot product, and cross product) in “abstract” form—that is, without
reference to any particular coordinate system. In practice, it is often easier to set
up Cartesian coordinates x, y, z and work with vector components. Let X, y, and
z be unit vectors parallel to the x, y, and z axes, respectively (Fig. 1.9(a)). An
arbitrary vector A can be expanded in terms of these basis vectors (Fig. 1.9(b)):

=
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FIGURE 1.9
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A=AX+AY+ AL

The numbers A,, A, and A_, are the “components” of A; geometrically, they
are the projections of A along the three coordinate axes (A, = A -X, A, = A -y,
A, = A - 7). We can now reformulate each of the four vector operations as a rule
for manipulating components:

A+B=(AX+A¥y+ A.;2) + (B,X+ B,y + B.2)
= (Ay + B)X+ (A, + B,)§ + (A. + B). (1.7)
Rule (i): To add vectors, add like components.
aA = (aA)X + (aA,)y + (aA,)zZ. (1.8)

Rule (ii): 7o multiply by a scalar, multiply each component.

Because X, y, and Z are mutually perpendicular unit vectors,

A

R-%=§.§=2.5=1;, R-§=%-5=9-2=0. (1.9)

Accordingly,
A -B=(AX+Ay+ Az (B:X+ B,y + B.Z)
=AB,+A,B, + A,B;. (1.10)

Rule (iii): 7o calculate the dot product, multiply like components, and add.
In particular,

A-A=Al+ AL+ AL

SO

A= [A2+ A2+ A2, (1.11)

(This is, if you like, the three-dimensional generalization of the Pythagorean
theorem.)
Similarly,'

XXX= yxy=zxz=0,

XXy=-yxXX=1,

yXZ=-2xy=X,

IXX=—-XXZ=Yy. (1.12)

' These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the right,
z-axis up, or any rotated version thereof). In a left-handed system (z-axis down), the signs would be
reversed: X x § = —Z, and so on. We shall use right-handed systems exclusively.
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Therefore,
AXB=(AX+ Ayff + A,Z) x (B,X+ Byff + B.7) (1.13)
= (A,B; — AZB),))A( +(A.B, — A,B,)y + (AcBy — AyBx)i.

This cumbersome expression can be written more neatly as a determinant:

X y z
AxB=| A, A, A, | (1.14)
B, B, B.

Rule (iv): To calculate the cross product, form the determinant whose first row
is X, ¥, Z, whose second row is A (in component form), and whose third row is B.

Example 1.2. Find the angle between the face diagonals of a cube.

Solution
We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with
one corner at the origin. The face diagonals A and B are

A=1%84+0§+12  B=0%k+1§+12

7z A
(O, 09 1)
B
" (0. 1,0)
y
x¥(1,0,0)
FIGURE 1.10

So, in component form,
A-B=1-0+0-1+1-1=1.
On the other hand, in “abstract” form,
A-B=ABcos# = ~2v2cosf = 2cosb.
Therefore,
cosf =1/2, or 6 =060°.

Of course, you can get the answer more easily by drawing in a diagonal across
the top of the cube, completing the equilateral triangle. But in cases where the
geometry is not so simple, this device of comparing the abstract and component
forms of the dot product can be a very efficient means of finding angles.
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Problem 1.3 Find the angle between the body diagonals of a cube.

Problem 1.4 Use the cross product to find the components of the unit vector n
perpendicular to the shaded plane in Fig. 1.11.

1.1.3 B Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed
with a third vector to form a triple product.

(i) Scalar triple product: A - (B x C). Geometrically, |A - (B x C)| is the
volume of the parallelepiped generated by A, B, and C, since |B x C] is the area
of the base, and |A cos @] is the altitude (Fig. 1.12). Evidently,

A-BxC)=B-(CxA)=C-(AxB), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is
preserved—in view of Eq. 1.6, the “nonalphabetical” triple products,

A-CxB)=B-AxC)=C-(BxA),

have the opposite sign. In component form,

A, A, A,
A-BxC)=| B, B, B. (1.16)
c. C, C.

Note that the dot and cross can be interchanged:
A-BxC)=AxB)-C

(this follows immediately from Eq. 1.15); however, the placement of the parenthe-
ses is critical: (A - B) x C is a meaningless expression—you can’t make a cross
product from a scalar and a vector.

FIGURE 1.11 FIGURE 1.12
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(ii) Vector triple product: A x (B x C). The vector triple product can be
simplified by the so-called BAC-CAB rule:

Ax(BxC)=B(A-C)—-C(A-B). (1.17)
Notice that
AxB)xC=-Cx(AxB)=—-AB-C)+B(A-0O

is an entirely different vector (cross-products are not associative). All higher vec-
tor products can be similarly reduced, often by repeated application of Eq. 1.17,
so it is never necessary for an expression to contain more than one cross product
in any term. For instance,

(AxB)- (CxD)=(A-C)B-D)— (A -D)B-C);
Ax[Bx(CxD)]=B[A-(CxD)]—(A-B)(CxD). (LI8)

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component
form.

Problem 1.6 Prove that
[AxBxOJ]+[Bx(CxA]+[Cx((AxB)]=0.

Under what conditions does A x (B x C) = (A x B) x C?

1.1.4 W Position, Displacement, and Separation Vectors

The location of a point in three dimensions can be described by listing its
Cartesian coordinates (x, y, z). The vector to that point from the origin (O)
is called the position vector (Fig. 1.13):

r=xX+yy+zz. (1.19)

Source point

Field point

FIGURE 1.13 FIGURE 1.14
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I will reserve the letter r for this purpose, throughout the book. Its magnitude,

r=+vx*+y?+ 22 (1.20)

is the distance from the origin, and

r xX+yy+zz

f‘ = - =
VS S e
is a unit vector pointing radially outward. The infinitesimal displacement vector,
from (x, y,z) to (x +dx,y +dy,z +dz),is

(1.21)

dl=dxx+dyy+dzi. (1.22)

(We could call this dr, since that’s what it is, but it is useful to have a special
notation for infinitesimal displacements.)

In electrodynamics, one frequently encounters problems involving two
points—typically, a source point, r’, where an electric charge is located, and
a field point, r, at which you are calculating the electric or magnetic field
(Fig. 1.14). It pays to adopt right from the start some short-hand notation for
the separation vector from the source point to the field point. I shall use for this
purpose the script letter 2:

rA=r—r. (1.23)
Its magnitude is
r=|r—r|, (1.24)

and a unit vector in the direction from r’ to r is

. r—r
= - = . (125)
2 r—r|
In Cartesian coordinates,
2= (x—xX+Q—-y)y+(z—7)z, (1.26)
1=V @ =)+ (= Y2+ =22 (1.27)

PR 0 & ) el G P (1.28)
JE =2+ (= )2+ (@ —2)?

(from which you can appreciate the economy of the script-z notation).

Problem 1.7 Find the separation vector %2 from the source point (2,8,7) to the field
point (4,6,8). Determine its magnitude (%), and construct the unit vector 2.
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1.1.5 B How Vectors Transform?

The definition of a vector as “a quantity with a magnitude and direction” is not
altogether satisfactory: What precisely does “direction” mean? This may seem a
pedantic question, but we shall soon encounter a species of derivative that looks
rather like a vector, and we’ll want to know for sure whether it is one.

You might be inclined to say that a vector is anything that has three components
that combine properly under addition. Well, how about this: We have a barrel of
fruit that contains N, pears, N, apples, and N, bananas. Is N = N,X+ N,y +
Nz a vector? It has three components, and when you add another barrel with
M, pears, M, apples, and M, bananas the result is (N, + M,) pears, (N, + M,)
apples, (N, + M) bananas. So it does add like a vector. Yet it’s obviously not
a vector, in the physicist’s sense of the word, because it doesn’t really have a
direction. What exactly is wrong with it?

The answer is that N does not transform properly when you change coordi-
nates. The coordinate frame we use to describe positions in space is of course
entirely arbitrary, but there is a specific geometrical transformation law for con-
verting vector components from one frame to another. Suppose, for instance, the
X,Vy,Z system is rotated by angle ¢, relative to x, y, z, about the common x = X
axes. From Fig. 1.15,

Ay = Acosf, A, = Asinf,
while
Ay = Acosf = Acos(f — ¢) = A(cos 0 cos ¢ + sin 6 sin ¢)
=CcosPpA, +singA_,
A, = Asinf = Asin(d — ¢) = A(sinf cos ¢ — cos @ sin ¢)
= —singpA, + cospA;.

]l

|
I

A / :\\ ¥

0 :‘

0

o .
y

FIGURE 1.15

2This section can be skipped without loss of continuity.
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We might express this conclusion in matrix notation:
Ay\ [ cos¢ sing Ay
(ZZ)_ (—sinqS cosq&)(AZ ’ (1.29)

More generally, for rotation about an arbitrary axis in three dimensions, the
transformation law takes the form

éx Rxx ny RXZ Ax
Ay | =1 R Ry Ry Ay ], (1.30)
Az RZ\ RZ)‘ Rzz Az
or, more compactly,
A=) RijA;, (1.31)
j=1

where the index 1 stands for x, 2 for y, and 3 for z. The elements of the ma-
trix R can be ascertained, for a given rotation, by the same sort of trigonometric
arguments as we used for a rotation about the x axis.

Now: Do the components of N transform in this way? Of course not—it doesn’t
matter what coordinates you use to represent positions in space; there are still just
as many apples in the barrel. You can’t convert a pear into a banana by choosing
a different set of axes, but you can turn A, into Zy. Formally, then, a vector is
any set of three components that transforms in the same manner as a displace-
ment when you change coordinates. As always, displacement is the model for the
behavior of all vectors.?

By the way, a (second-rank) tensor is a quantity with nine components, 7y,
T.y, Ty, Tyy, ..., T ;, which transform with two factors of R:

Txx = Rxx(Rxx Txx + ny Txy + sz sz)

+ ny(Rxx Tyx + ny Tyy + sz Tyz)

+ sz(Rxx sz + ny sz + szTzz)’ s
or, more compactly,

3
T = ZZRikRﬂTkl. (1.32)
k=1 I=1

3If you’re a mathematician you might want to contemplate generalized vector spaces in which the
“axes” have nothing to do with direction and the basis vectors are no longer X, ¥, and Z (indeed, there

may be more than three dimensions). This is the subject of linear algebra. But for our purposes all
vectors live in ordinary 3-space (or, in Chapter 12, in 4-dimensional space-time.)
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In general, an nth-rank tensor has n indices and 3" components, and transforms
with n factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is
a tensor of rank zero.*

Problem 1.8

(a) Prove that the two—dimegsiglal rcltat_ion matrix (Eq. 1.29) preserves dot prod-
ucts. (That is, show that A,B, + A.B, = A, B, + A,B..)

(b) What constraints must the elements (R;;) of the three-dimensional rotation ma-
trix (Eq. 1.30) satisty, in order to preserve the length of A (for all vectors A)?

Problem 1.9 Find the transformation matrix R that describes a rotation by 120°
about an axis from the origin through the point (1, 1, 1). The rotation is clockwise
as you look down the axis toward the origin.

Problem 1.10

(a) How do the components of a vector’ transform under a translation of coordi-
nates (X =x,y =y —a, z = z, Fig. 1.16a)?

(b) How do the components of a vector transform under an inversion of coordinates
x=—-x,y=—-y,z = —z, Fig. 1.16b)?

(c) How do the components of a cross product (Eq. 1.13) transform under inver-
sion? [The cross-product of two vectors is properly called a pseudovector be-
cause of this “anomalous” behavior.] Is the cross product of two pseudovectors
a vector, or a pseudovector? Name two pseudovector quantities in classical me-
chanics.

(d) How does the scalar triple product of three vectors transform under inversions?
(Such an object is called a pseudoscalar.)

A4z
Z
X
a y
—— - > -~ >
/ y y y
x X
! @) AN
FIGURE 1.16

A scalar does not change when you change coordinates. In particular, the components of a vector are
not scalars, but the magnitude is.

3Beware: The vector r (Eq. 1.19) goes from a specific point in space (the origin, ©O) to the point
P = (x, y, z). Under translations the new origin (O) is at a different location, and the arrow from O
to P is a completely different vector. The original vector r still goes from O to P, regardless of the
coordinates used to label these points.
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1.2 H DIFFERENTIAL CALCULUS

1.2.1 B “Ordinary” Derivatives

Suppose we have a function of one variable: f(x). Question: What does the
derivative, df/dx, do for us? Answer: It tells us how rapidly the function f(x)
varies when we change the argument x by a tiny amount, dx:

df = <%> dx. (1.33)

In words: If we increment x by an infinitesimal amount dx, then f changes
by an amount df; the derivative is the proportionality factor. For example, in
Fig. 1.17(a), the function varies slowly with x, and the derivative is correspond-
ingly small. In Fig. 1.17(b), f increases rapidly with x, and the derivative is large,
as you move away from x = 0.

Geometrical Interpretation: The derivative d f/dx is the slope of the graph of
f versus x.

1.2.2 M Gradient

Suppose, now, that we have a function of three variables—say, the temperature
T (x, y, z) in this room. (Start out in one corner, and set up a system of axes; then
for each point (x, y, z) in the room, T gives the temperature at that spot.) We want
to generalize the notion of “derivative” to functions like 7', which depend not on
one but on three variables.

A derivative is supposed to tell us how fast the function varies, if we move a
little distance. But this time the situation is more complicated, because it depends
on what direction we move: If we go straight up, then the temperature will prob-
ably increase fairly rapidly, but if we move horizontally, it may not change much
at all. In fact, the question “How fast does 7' vary?” has an infinite number of
answers, one for each direction we might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial deriva-

tives states that
oT oT oT
dT = | — |dx+ | — |dy+ | — ) dz. (1.34)
ax ay 0z

4
\

(a) o (b) ’“

FIGURE 1.17
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This tells us how 7' changes when we alter all three variables by the infinites-
imal amounts dx, dy, dz. Notice that we do not require an infinite number of
derivatives—three will suffice: the partial derivatives along each of the three co-
ordinate directions.

Equation 1.34 is reminiscent of a dot product:

or ., oT,. dT, n n N
dT = —xX+ —y+ —2Z ) - (dxXxX+dyy—+dzz)
ax ay 0z

= (VT)- ), (1.35)

where

or ., 0T, 0T,

VT = 8xX+ 8yy-i— 8zz (1.36)
is the gradient of 7. Note that VT is a vector quantity, with three components;
it is the generalized derivative we have been looking for. Equation 1.35 is the
three-dimensional version of Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has
magnitude and direction. To determine its geometrical meaning, let’s rewrite the
dot product (Eq. 1.35) using Eq. 1.1:

dT = VT -dl = |VT||dl|cos6, (1.37)

where 6 is the angle between VT and dl. Now, if we fix the magnitude |dl| and
search around in various directions (that is, vary 0), the maximum change in T
evidentally occurs when 6 = 0 (for then cos@ = 1). That is, for a fixed distance
|dl|, dT is greatest when I move in the same direction as VT . Thus:

The gradient VT points in the direction of maximum increase of the
function T .

Moreover:

The magnitude |VT| gives the slope (rate of increase) along this
maximal direction.

Imagine you are standing on a hillside. Look all around you, and find the di-
rection of steepest ascent. That is the direction of the gradient. Now measure the
slope in that direction (rise over run). That is the magnitude of the gradient. (Here
the function we’re talking about is the height of the hill, and the coordinates it
depends on are positions—Ilatitude and longitude, say. This function depends on
only rwo variables, not three, but the geometrical meaning of the gradient is easier
to grasp in two dimensions.) Notice from Eq. 1.37 that the direction of maximum
descent is opposite to the direction of maximum ascent, while at right angles
(60 = 90°) the slope is zero (the gradient is perpendicular to the contour lines).
You can conceive of surfaces that do not have these properties, but they always
have “kinks” in them, and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If VT =0 at (x,y, z),
then dT = 0 for small displacements about the point (x, y, z). This is, then, a
stationary point of the function 7'(x, y, z). It could be a maximum (a summit),
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a minimum (a valley), a saddle point (a pass), or a “shoulder.” This is analogous
to the situation for functions of one variable, where a vanishing derivative signals
a maximum, a minimum, or an inflection. In particular, if you want to locate the
extrema of a function of three variables, set its gradient equal to zero.

Example 1.3. Find the gradient of r = \/x2 + y2 + z2 (the magnitude of the
position vector).

Solution
v 8rA+8rA+8rA
r=—X+ — — 1z
ox 8yy 0z
1 2x .1 2y .1 2z N
=%+ - 2
22+ ¥+ 2Yx24y 4227 2x2 42422

XX+ yy+zz r

= —_— = — = f'
VXE+yr4z2 o
Does this make sense? Well, it says that the distance from the origin increases

most rapidly in the radial direction, and that its rate of increase in that direction
is 1...just what you’d expect.

Problem 1.11 Find the gradients of the following functions:
@) flx,y,2) =x>+y +*
(b) f(x,y,2) =x2y3zh
(c) f(x,y,z) =¢€*sin(y)In(z).
Problem 1.12 The height of a certain hill (in feet) is given by
h(x,y) = 10Qxy — 3x* — 4y> — 18x 4+ 28y + 12),
where y is the distance (in miles) north, x the distance east of South Hadley.
(a) Where is the top of the hill located?
(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile
east of South Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let 2 be the separation vector from a fixed point (x', y’, z’) to the
point (x, y, z), and let 2 be its length. Show that

(a) V(»?) = 2.
(b) V(1/2) = —&/2>.

(c) What is the general formula for V (2")?
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Problem 1.14 Suppose that f is a function of two variables (y and z) only.
Show that the gradient V f = (3f/dy)y + (8f/dz)z transforms as a vector un-
der rotations, Eq. 1.29. [Hint: (3f/3y) = (3f/dy)(dy/dy) + (3f/3z)(9z/dY),
and the analogous formula for df/dz. We know that y = ycos¢ + zsin¢ and
7= —ysin¢ 4+ zcos¢; “solve” these equations for y and z (as functions of y
and 7), and compute the needed derivatives dy/dy, dz/07y, etc.]

1.2.3 B The Del Operator

The gradient has the formal appearance of a vector, V, “multiplying” a scalar 7':
~0 L0 L0

VT = (X— +y—+ z—) T. (1.38)
X Z

(For once, I write the unit vectors to the left, just so no one will think this means
0%/dx, and so on—which would be zero, since X is constant.) The term in paren-
theses is called del:

\% A3+A8+Aa (1.39)
= X— —_— 7—. .
ox Yoy Tz

Of course, del is not a vector, in the usual sense. Indeed, it doesn’t mean much
until we provide it with a function to act upon. Furthermore, it does not “multiply”
T ; rather, it is an instruction to differentiate what follows. To be precise, then, we
say that V is a vector operator that acts upon T, not a vector that multiplies 7.

With this qualification, though, V mimics the behavior of an ordinary vector in
virtually every way; almost anything that can be done with other vectors can also
be done with V, if we merely translate “multiply” by “act upon.” So by all means
take the vector appearance of V seriously: it is a marvelous piece of notational
simplification, as you will appreciate if you ever consult Maxwell’s original work
on electromagnetism, written without the benefit of V.

Now, an ordinary vector A can multiply in three ways:

1. By ascalara : Aa;
2. By avector B, via the dot product: A - B;

3. By a vector B via the cross product: A x B.
Correspondingly, there are three ways the operator V can act:

1. On a scalar function T : VT (the gradient);
2. On a vector function v, via the dot product: V - v (the divergence);

3. On a vector function v, via the cross product: V x v (the curl).
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We have already discussed the gradient. In the following sections we examine the
other two vector derivatives: divergence and curl.

1.2.4 H The Divergence
From the definition of V we construct the divergence:

. 0 ~0 .0 o A "
V.v= (xa -l—y@ —I—za—Z)-(va—i-vyy—i-sz)

_dvy | dvy | v,
T 9x 9y 9z

(1.40)

Observe that the divergence of a vector function® v is itself a scalar V - v.

Geometrical Interpretation: The name divergence is well chosen, for V - v
is a measure of how much the vector v spreads out (diverges) from the point in
question. For example, the vector function in Fig. 1.18a has a large (positive)
divergence (if the arrows pointed in, it would be a negative divergence), the func-
tion in Fig. 1.18b has zero divergence, and the function in Fig. 1.18c again has a
positive divergence. (Please understand that v here is a function—there’s a differ-
ent vector associated with every point in space. In the diagrams, of course, I can
only draw the arrows at a few representative locations.)

Imagine standing at the edge of a pond. Sprinkle some sawdust or pine needles
on the surface. If the material spreads out, then you dropped it at a point of positive
divergence; if it collects together, you dropped it at a point of negative divergence.
(The vector function v in this model is the velocity of the water at the surface—
this is a two-dimensional example, but it helps give one a “feel” for what the
divergence means. A point of positive divergence is a source, or “faucet”; a point
of negative divergence is a sink, or “drain.”)

—_—l
//l\\
‘ bttt
(a) (b) (©)

FIGURE 1.18

6 A vector function v(x, y, 2) = vy (x, y, 2) X+ vy(x, ¥, 2) § + vz (x, y, 2) Z is really three functions—
one for each component. There’s no such thing as the divergence of a scalar.
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Example 1.4. Suppose the functions in Fig. 1.18 are v, = r = xX+ yy+z%,
v, = Z, and v, = z Z. Calculate their divergences.

Solution
0 0 0
Vvi=—@W+—+—@@=1+14+1=3.
ox dy 0z

As anticipated, this function has a positive divergence.

a d a
Vvy=—0)+ -0+ —-(1)=0+0+0=0,
0x ay 0z
as expected.

d d 0
Vive=—0+—0)+ =) =0+0+1=1.
ox ay 07

Problem 1.15 Calculate the divergence of the following vector functions:
(@) v, =x*X+3x?y — 2xz7Z.

(b) vy =xyX+2yzy+3zxZ.

(©) Ve =y X+ Qxy+2)§ +2yz2.

° Problem 1.16 Sketch the vector function

and compute its divergence. The answer may surprise you. .. can you explain it?

! Problem 1.17 In two dimensions, show that the divergence transforms as a scalar
under rotations. [Hint: Use Eq. 1.29 to determine v, and v, and the method of
Prob. 1.14 to calculate the derivatives. Your aim is to show that 0v, /9y + 0v,/07 =
dv,/dy + dv,/0z.]

1.2.5 H The Curl

From the definition of V we construct the curl:

A A A

X y z
Vxv=| d/dx 09/dy 09/0z
Uy vy v,

(v, D (v, ou.\ . [dov, O
k(D o) (D 2 () 4
ay 0z 0z ox ox ay
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FIGURE 1.19

Notice that the curl of a vector function’ v is, like any cross product, a vector.

Geometrical Interpretation: The name curl is also well chosen, for V x v is
a measure of how much the vector v swirls around the point in question. Thus
the three functions in Fig. 1.18 all have zero curl (as you can easily check for
yourself), whereas the functions in Fig. 1.19 have a substantial curl, pointing in the
z direction, as the natural right-hand rule would suggest. Imagine (again) you are
standing at the edge of a pond. Float a small paddlewheel (a cork with toothpicks
pointing out radially would do); if it starts to rotate, then you placed it at a point
of nonzero curl. A whirlpool would be a region of large curl.

Example 1.5. Suppose the function sketched in Fig. 1.19a is v, = —yX + x¥,
and that in Fig. 1.19b is v, = x¥. Calculate their curls.

Solution
X y z
Vxv,=|9d/dx d/dy 09/3z | =2z,
—y by 0
and
X y z
Vxv,=|09d/0x 9/dy 0d/dz |=1.
0 X 0

As expected, these curls point in the +z direction. (Incidentally, they both have
zero divergence, as you might guess from the pictures: nothing is “spreading
out”...it just “swirls around.”)

"There’s no such thing as the curl of a scalar.
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Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Draw a circle in the xy plane. At a few representative points draw
the vector v tangent to the circle, pointing in the clockwise direction. By comparing
adjacent vectors, determine the sign of dv, /dy and dv,/0dx. According to Eq. 1.41,
then, what is the direction of V x v? Explain how this example illustrates the geo-
metrical interpretation of the curl.

Problem 1.20 Construct a vector function that has zero divergence and zero curl
everywhere. (A constant will do the job, of course, but make it something a little
more interesting than that!)

1.2.6 H Product Rules

The calculation of ordinary derivatives is facilitated by a number of rules, such as
the sum rule:

d df dg
dx(f+g)  dx + dx’
the rule for multiplying by a constant:
d df
—(kf) = k—,
dx( » dx
the product rule:
d dg df
E(fg) = fd_x +ga'_x’
and the quotient rule:
df dg
fdx

4 (f\_%x " Tax
dx \ g g2

Similar relations hold for the vector derivatives. Thus,

V(if+g=Vf+Vg, V- (A+B)=(V-A)+(V-B),

Vx(A+B)=(V xA)+(V xB),
and
V(kf) =kV £, V. (kA) = k(V -A), V x (kA) = k(V x A),

as you can check for yourself. The product rules are not quite so simple. There
are two ways to construct a scalar as the product of two functions:

fg (product of two scalar functions),

A -B (dot product of two vector functions),



1.2 Differential Calculus 21

and two ways to make a vector:

fA  (scalar times vector),

A x B  (cross product of two vectors).

Accordingly, there are six product rules, two for gradients:

(1) V(fg) = fVg+gV/,

i) VA-B)=Ax(VxB)+Bx(VxA)+A-V)B+ (B -V)A,
two for divergences:

(iii) V- (fA=fV-A)+A-(V]),

(iv) V.-AxB) =B - (VxA)—A-(VxB),
and two for curls:

(v) Vx(fA) = f(VxA)—Ax(Vf),

(vi) VXAxB) =B -V)A-(A-V)B+A(V-B)—-B(V-A).
You will be using these product rules so frequently that I have put them inside the

front cover for easy reference. The proofs come straight from the product rule for
ordinary derivatives. For instance,

V- (fA) = fA)+ fA)+ fA)

af X af 0A, af A,
==—A, —A, — —A
<8x + 3x>+<8y )+f8y)+<az a 0z

=(Vf)-A+ f(V-A).

It is also possible to formulate three quotient rules:

V([):gi—ng

2 ’

g g
v <A>_g(V-A)—A-(Vg)
A2 = _ ,
g g
(A) g(VxA)+Ax (Vg
Vx|—)= 5 .
g g

However, since these can be obtained quickly from the corresponding product
rules, there is no point in listing them separately.
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Problem 1.21 Prove product rules (i), (iv), and (v).
Problem 1.22

(a) If A and B are two vector functions, what does the expression (A - V)B mean?
(That is, what are its x, y, and z components, in terms of the Cartesian compo-
nents of A, B, and V?)

(b) Compute (F - V)T, where T is the unit vector defined in Eq. 1.21.

(c) For the functions in Prob. 1.15, evaluate (v, - V)v,,.

Problem 1.23 (For masochists only.) Prove product rules (ii) and (vi). Refer to
Prob. 1.22 for the definition of (A - V)B.

Problem 1.24 Derive the three quotient rules.

Problem 1.25

(a) Check product rule (iv) (by calculating each term separately) for the functions
A=xX+2yy+3z% B=3yx—2xy.

(b) Do the same for product rule (ii).

(c) Do the same for rule (vi).

1.2.7 H Second Derivatives

The gradient, the divergence, and the curl are the only first derivatives we can
make with V; by applying V twice, we can construct five species of second deriva-
tives. The gradient VT is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient: V - (VT).
(2) Curl of gradient: V x (VT).

The divergence V - v is a scalar—all we can do is take its gradient:
(3) Gradient of divergence: V(V - v).

The curl V x v is a vector, so we can take its divergence and curl:
(4) Divergence of curl: V - (V x v).
(5) Curlof curl: V x (V x v).

This exhausts the possibilities, and in fact not all of them give anything new.
Let’s consider them one at a time:

b v = (32 45l a2 (g, 0T, 0T,
. = | x— _ — ) =% ob or,
3x yay BZ ax ayy BZ

9T N 9°T N 9T
Coax? 0 9yr a2’

(1.42)



1.2 Differential Calculus 23

This object, which we write as V2T for short, is called the Laplacian of T'; we
shall be studying it in great detail later on. Notice that the Laplacian of a scalar
T is a scalar. Occasionally, we shall speak of the Laplacian of a vector, V?v. By
this we mean a vector quantity whose x-component is the Laplacian of v,, and
so on:®

Viv = (Vo)X + (V20§ + (V20,)Z. (1.43)

This is nothing more than a convenient extension of the meaning of V2.
(2) The curl of a gradient is always zero:

V x (VT) = 0. (1.44)

This is an important fact, which we shall use repeatedly; you can easily prove it
from the definition of V, Eq. 1.39. Beware: You might think Eq. 1.44 is “obvi-
ously” true—isn’t it just (V x V)T, and isn’t the cross product of any vector (in
this case, V) with itself always zero? This reasoning is suggestive, but not quite
conclusive, since V is an operator and does not “multiply” in the usual way. The
proof of Eq. 1.44, in fact, hinges on the equality of cross derivatives:

0 <8T> a <8T)
——)==1=—). (1.45)
dx \ dy ay \ dx

If you think I’'m being fussy, test your intuition on this one:
(VT) x (VS).

Is that always zero? (It would be, of course, if you replaced the V’s by an ordinary
vector.)

(3) V(V - v) seldom occurs in physical applications, and it has not been given
any special name of its own—it’s just the gradient of the divergence. Notice
that V(V - v) is not the same as the Laplacian of a vector: V?v = (V - V)v #
V(V -v).

(4) The divergence of a curl, like the curl of a gradient, is always zero:

V.- (Vxv)y=0. (1.46)

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using
the vector identity A - (B x C) = (A x B) - C.)
(5) As you can check from the definition of V:

V x (V xV) =V(V-v) — V2v. (1.47)

So curl-of-curl gives nothing new; the first term is just number (3), and the sec-
ond is the Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the

8In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be
differentiated (see Sect. 1.4.1).
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Laplacian of a vector, in preference to Eq. 1.43, which makes explicit reference
to Cartesian coordinates.)

Really, then, there are just two kinds of second derivatives: the Laplacian
(which is of fundamental importance) and the gradient-of-divergence (which
we seldom encounter). We could go through a similar ritual to work out third
derivatives, but fortunately second derivatives suffice for practically all physical
applications.

A final word on vector differential calculus: It a/l flows from the operator V,
and from taking seriously its vectorial character. Even if you remembered only
the definition of V, you could easily reconstruct all the rest.

Problem 1.26 Calculate the Laplacian of the following functions:
(@) T, = x>+ 2xy + 3z + 4.

(b) T, = sinxsinysinz.

(c) T.=e>*sin4ycos3z.

(d) v=x*X+3x7y — 2xz 2.

Problem 1.27 Prove that the divergence of a curl is always zero. Check it for func-
tion v, in Prob. 1.15.

Problem 1.28 Prove that the curl of a gradient is always zero. Check it for function
(b) in Prob. 1.11.

1.3 M INTEGRAL CALCULUS

1.3.1 B Line, Surface, and Volume Integrals

In electrodynamics, we encounter several different kinds of integrals, among
which the most important are line (or path) integrals, surface integrals (or
flux), and volume integrals.

(a) Line Integrals. A line integral is an expression of the form

b
/ v-dl, (1.48)

where v is a vector function, d1 is the infinitesimal displacement vector (Eq. 1.22),
and the integral is to be carried out along a prescribed path P from point a to point
b (Fig. 1.20). If the path in question forms a closed loop (that is, if b = a), I shall
put a circle on the integral sign:

ygv -dl. (1.49)

At each point on the path, we take the dot product of v (evaluated at that point)
with the displacement dl to the next point on the path. To a physicist, the most
familiar example of a line integral is the work done by a force F: W = [ F - dl.
Ordinarily, the value of a line integral depends critically on the path taken from
ato b, but there is an important special class of vector functions for which the line
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integral is independent of path and is determined entirely by the end points. It will
be our business in due course to characterize this special class of vectors. (A force
that has this property is called conservative.)

Example 1.6. Calculate the line integral of the function v = y?X +2x(y + 1)y
from the point a = (1, 1, 0) to the point b = (2, 2, 0), along the paths (1) and (2)
in Fig. 1.21. What is § v - dl for the loop that goes from a to b along (1) and
returns to a along (2)?

Solution
As always, dl = dx X+ dyy + dzz. Path (1) consists of two parts. Along the
“horizontal” segment, dy = dz = 0, so

() dl=dxX, y=1, v-dl = y?dx = dx, sofv-dl=f12dx= 1.
On the “vertical” stretch, dx = dz = 0, so

(i) dl=dyy, x=2, v-dl=2x(y+ 1)dy =4(y + 1)dy, so

2
/v-dl=4/ (v + 1) dy = 10.
1

By path (1), then,

b
/ v-dl=1+4+10=11.
a
Meanwhile, on path (2) x = y, dx =dy, anddz =0, so

dl=dxX+dxy, v-dl =x*dx +2x(x + 1)dx = (3x> + 2x) dx,
and

b 2
/ v-dl:/ Bx +2x) dx = (&* + x|} = 10.
a 1

(The strategy here is to get everything in terms of one variable; I could just as well
have eliminated x in favor of y.)
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For the loop that goes out (1) and back (2), then,

%V-dl:ll—lO:l.

(b) Surface Integrals. A surface integral is an expression of the form

/ v -da, (1.50)
S

where v is again some vector function, and the integral is over a specified surface
S. Here da is an infinitesimal patch of area, with direction perpendicular to the
surface (Fig. 1.22). There are, of course, two directions perpendicular to any
surface, so the sign of a surface integral is intrinsically ambiguous. If the surface
is closed (forming a “balloon”), in which case I shall again put a circle on the

integral sign
% v-da,

then tradition dictates that “outward” is positive, but for open surfaces it’s arbi-
trary. If v describes the flow of a fluid (mass per unit area per unit time), then
[ v -da represents the total mass per unit time passing through the surface—
hence the alternative name, “flux.”

Ordinarily, the value of a surface integral depends on the particular surface
chosen, but there is a special class of vector functions for which it is independent
of the surface and is determined entirely by the boundary line. An important task
will be to characterize this special class of functions.

z da ;A I(V) /(ll)

-+ . ——
. (iv) ;1)/’ (iii)
y 2 y
X X 2
FIGURE 1.22 FIGURE 1.23

Example 1.7. Calculate the surface integral of v =2xzX + (x +2) § + y(z>—3)
z over five sides (excluding the bottom) of the cubical box (side 2) in Fig. 1.23.
Let “upward and outward” be the positive direction, as indicated by the arrows.

Solution
Taking the sides one at a time:
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()x=2,da=dydzX, v-da=2xzdydz =4zdydz, so

2 2
/V-da=4/ dyf zdz = 16.
0 0

(i)x =0, da=—dydzX, v-da= —2xzdydz =0, so

/v-da:O.

(i) y =2, da=dxdzy, v-da= (x +2)dxdz, so

2 2
/V-da=/(x+2)dx/ dz = 12.
0 0

(iv)y =0, da= —dxdzy, v-da=—(x+2)dxdz, so

2 2
/V-da:—/ (x+2)dx/ dz = —12.
0 0

(V)z=2,da=dxdyz, v-da=y(*—3)dxdy = ydxdy, so

2 2
/v-da:/dx/ yvdy = 4.
0 0

f v-da=164+0+12—-12+4 =20.
surface

The total flux is

(c) Volume Integrals. A volume integral is an expression of the form

/ Tdr, (1.51)
1%

where T is a scalar function and dt is an infinitesimal volume element. In Carte-
sian coordinates,

dt =dxdydz. (1.52)

For example, if T is the density of a substance (which might vary from point to
point), then the volume integral would give the total mass. Occasionally we shall
encounter volume integrals of vector functions:

/Vdr:/(vxi-l-vyf’—i-vzi)dt :f(/vxdt+§"/vydt+2/vzdt;
(1.53)

because the unit vectors (X, ¥, and z) are constants, they come outside the integral.
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Example 1.8. Calculate the volume integral of T = xyz> over the prism in
Fig. 1.24.

Solution
You can do the three integrals in any order. Let’s do x first: it runs from O to
(1 — y), then y (it goes from O to 1), and finally z (O to 3):

frae L] [ e]ol

2 [2a [a-wvar=to (5) =1
T2y SV TS 12)" %

ZA

FIGURE 1.24

Problem 1.29 Calculate the line integral of the function v = x>X +2yzy + y*Z
from the origin to the point (1,1,1) by three different routes:

(@ (0,0,0) - (1,0,0) — (1,1,0) — (1, 1, ).
() (0,0,0) — (0,0,1) - (0, I, 1) — (1, 1, 1).
(c) The direct straight line.

(d) What is the line integral around the closed loop that goes out along path (a) and
back along path (b)?

Problem 1.30 Calculate the surface integral of the function in Ex. 1.7, over the bot-
tom of the box. For consistency, let “upward” be the positive direction. Does the
surface integral depend only on the boundary line for this function? What is the
total flux over the closed surface of the box (including the bottom)? [Note: For the
closed surface, the positive direction is “outward,” and hence “down,” for the bottom
face.]

Problem 1.31 Calculate the volume integral of the function T = z? over the tetra-
hedron with corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).
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1.3.2 B The Fundamental Theorem of Calculus

Suppose f(x) is a function of one variable. The fundamental theorem of calcu-

lus says:
brd
f (df)dx = f(b) — f(a). (1.54)

X
In case this doesn’t look familiar, I'll write it another way:

b
f F(x)dx = f(b) — f(a),

where df/dx = F(x). The fundamental theorem tells you how to integrate F(x):
you think up a function f(x) whose derivative is equal to F.

Geometrical Interpretation: According to Eq. 1.33, df = (df/dx)dx is the
infinitesimal change in f when you go from (x) to (x + dx). The fundamental
theorem (Eq. 1.54) says that if you chop the interval from a to b (Fig. 1.25) into
many tiny pieces, dx, and add up the increments df from each little piece, the
result is (not surprisingly) equal to the total change in f: f(b) — f(a). In other
words, there are two ways to determine the total change in the function: either
subtract the values at the ends or go step-by-step, adding up all the tiny increments
as you go. You’ll get the same answer either way.

Notice the basic format of the fundamental theorem: the integral of a derivative
over some region is given by the value of the function at the end points (bound-
aries). In vector calculus there are three species of derivative (gradient, diver-
gence, and curl), and each has its own “fundamental theorem,” with essentially
the same format. I don’t plan to prove these theorems here; rather, I will explain
what they mean, and try to make them plausible. Proofs are given in Appendix A.

1.3.3 B The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables 7 (x, y, z). Starting at point
a, we move a small distance dl; (Fig. 1.26). According to Eq. 1.37, the function
T will change by an amount

dT = (VT) - dl,.

J ()
f(a)

<y

FIGURE 1.25 FIGURE 1.26



30

Chapter 1 Vector Analysis

Now we move a little further, by an additional small displacement dl,; the incre-
mental change in 7" will be (VT') - dl,. In this manner, proceeding by infinitesimal
steps, we make the journey to point b. At each step we compute the gradient of 7'
(at that point) and dot it into the displacement dl. . . this gives us the change in 7.
Evidently the total change in T in going from a to b (along the path selected) is

b
/ (VT) -dl=T(b) — T(a). (1.55)

This is the fundamental theorem for gradients; like the “ordinary” fundamental
theorem, it says that the integral (here a line integral) of a derivative (here the
gradient) is given by the value of the function at the boundaries (a and b).

Geometrical Interpretation: Suppose you wanted to determine the height of
the Eiffel Tower. You could climb the stairs, using a ruler to measure the rise at
each step, and adding them all up (that’s the left side of Eq. 1.55), or you could
place altimeters at the top and the bottom, and subtract the two readings (that’s
the right side); you should get the same answer either way (that’s the fundamental
theorem).

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the
path taken from a to b. But the right side of Eq. 1.55 makes no reference to the
path—only to the end points. Evidently, gradients have the special property that
their line integrals are path independent:

Corollary 1: fab(V T) - dl is independent of the path taken from a to b.

Corollary 2: ¢ (VT) - dl = 0, since the beginning and end points
are identical, and hence T (b) — T (a) = 0.

Example 1.9. Let7T = xyz, and take point a to be the origin (0, 0, 0) and b the
point (2, 1, 0). Check the fundamental theorem for gradients.

Solution

Although the integral is independent of path, we must pick a specific path
in order to evaluate it. Let’s go out along the x axis (step 1) and then up
(step ii) (Fig. 1.27). As always, dl = dx X +dyy +dzz; VT = y>X + 2xyy.

() y=0; dl=dxX, VT -dl = y>dx =0, so

fVT-dl:O.

(ihx =2; dl=dyy, VT -dl =2xydy = 4ydy, so

1 1
/VT-dl:/ 4ydy=2y20=2.
ii 0
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The total line integral is 2. Is this consistent with the fundamental theorem? Yes:
Th)—T@=2-0=2.

Now, just to convince you that the answer is independent of path, let me calcu-
late the same integral along path iii (the straight line from a to b):

(i) y = 3x, dy = 3 dx, VT -dl = y>dx + 2xydy = 3x?dx, so

2 2
/VT-dl:f %xza’x:%x3 = 2.
iii 0 0

Problem 1.32 Check the fundamental theorem for gradients, using 7T = x2 4+
4xy + 2yz3, the points a = (0, 0,0), b = (1, 1, 1), and the three paths in Fig. 1.28:

(a) (0,0,0) - (1,0,0) = (1,1,0) — (1,1, 1);
(b) (0,0,0) - (0,0,1) —» (0,1,1) = (1,1, 1);

(c) the parabolic path z = x?; y = x.

ZA Z

A ';
[ ]
A

y / y AN ! y
Y @ (b) ¥ (©

FIGURE 1.28

1.3.4 B The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

/(V -v)dt = fv -da. (1.56)

1% S
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In honor, I suppose, of its great importance, this theorem has at least three special
names: Gauss’s theorem, Green’s theorem, or simply the divergence theorem.
Like the other “fundamental theorems,” it says that the integral of a derivative (in
this case the divergence) over a region (in this case a volume, V) is equal to the
value of the function at the boundary (in this case the surface S that bounds the
volume). Notice that the boundary term is itself an integral (specifically, a surface
integral). This is reasonable: the “boundary” of a line is just two end points, but
the boundary of a volume is a (closed) surface.

Geometrical Interpretation: If v represents the flow of an incompressible fluid,
then the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out
through the surface, per unit time. Now, the divergence measures the “spreading
out” of the vectors from a point—a place of high divergence is like a “faucet,”
pouring out liquid. If we have a bunch of faucets in a region filled with incom-
pressible fluid, an equal amount of liquid will be forced out through the bound-
aries of the region. In fact, there are two ways we could determine how much is
being produced: (a) we could count up all the faucets, recording how much each
puts out, or (b) we could go around the boundary, measuring the flow at each
point, and add it all up. You get the same answer either way:

/ (faucets within the volume) = % (flow out through the surface).

This, in essence, is what the divergence theorem says.

Example 1.10. Check the divergence theorem using the function
V=" %+ Quy +2)§ + 2y 2

and a unit cube at the origin (Fig. 1.29).

Solution
In this case

Vov=20x+y),

1 p1opl
fZ(x—l—y)dtzZ/ / /(x—l—y)dxdydz,
v o Jo Jo

1 1 1
/(x+y)dx=%+y, f(%+y)dy=1, / ldz = 1.
0 0 0

and

Thus,

fV-th:Z.

1%
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Z Al T(V) /(ii)
1

@ | i
| 1 y
X
(vi)
FIGURE 1.29

So much for the left side of the divergence theorem. To evaluate the surface
integral we must consider separately the six faces of the cube:

1 pl
1) /v-da:/'/yzdydz:g
o Jo
1 pl
(ii) fv-da:—/fyzdydz=—%.
o Jo
1 pl
(iii) ‘/vda:/,/(h+q5m%z=§
o Jo
1 pl
(iv) /V-da=—/fz2dxdz=—%.
0 Jo i
Vda—ff2ydxdy—1
1 pl
f/dedyzO.
0

_|_

v)

(vi) /
So the total flux is:

%v'daz
S

Wl

—14+1+40=2,

W=
W=

as expected.

Problem 1.33 Test the divergence theorem for the function v = (xy) X + (2yz) y +
(3zx) z. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.
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AZ

FIGURE 1.30

1.3.5 B The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’
theorem, states that

/(va)-da:f]{v-dl. (1.57)
S

P

As always, the integral of a derivative (here, the curl) over a region (here, a patch
of surface, S) is equal to the value of the function at the boundary (here, the
perimeter of the patch, P). As in the case of the divergence theorem, the boundary
term is itself an integral—specifically, a closed line integral.

Geometrical Interpretation: Recall that the curl measures the “twist” of the
vectors v; a region of high curl is a whirlpool—if you put a tiny paddle wheel
there, it will rotate. Now, the integral of the curl over some surface (or, more
precisely, the flux of the curl through that surface) represents the “total amount
of swirl,” and we can determine that just as well by going around the edge and
finding how much the flow is following the boundary (Fig. 1.31). Indeed, § v - d1
is sometimes called the circulation of v.

You may have noticed an apparent ambiguity in Stokes’ theorem: concerning
the boundary line integral, which way are we supposed to go around (clockwise
or counterclockwise)? If we go the “wrong” way, we’ll pick up an overall sign
error. The answer is that it doesn’t matter which way you go as long as you are
consistent, for there is a compensating sign ambiguity in the surface integral:
Which way does da point? For a closed surface (as in the divergence theorem),
da points in the direction of the outward normal; but for an open surface, which
way is “out”? Consistency in Stokes’ theorem (as in all such matters) is given by
the right-hand rule: if your fingers point in the direction of the line integral, then
your thumb fixes the direction of da (Fig. 1.32).

Now, there are plenty of surfaces (infinitely many) that share any given bound-
ary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film
constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap
film will expand, making a larger surface, with the same boundary. Ordinarily, a
flux integral depends critically on what surface you integrate over, but evidently
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FIGURE 1.31 FIGURE 1.32

this is not the case with curls. For Stokes’ theorem says that [(V x V) - dais equal
to the line integral of v around the boundary, and the latter makes no reference to
the specific surface you choose.

Corollary 1: [ (V x v) - da depends only on the boundary line, not
on the particular surface used.

Corollary 2:  §(V x v) - da = 0 for any closed surface, since the
boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop
the parallel further in due course.

Example 1.11. Suppose v = (2xz + 3y?)¥y + (4yz?)Z. Check Stokes’ theorem
for the square surface shown in Fig. 1.33.

Solution
Here

Vx v= (422 —-2x)X+2z2 and da=dydzxk.

y ...
ot (i11)
¢

i)y AGD)

Y 1 )
. 1)
FIGURE 1.33

(In saying that da points in the x direction, we are committing ourselves to a
counterclockwise line integral. We could as well write da = —dy dz X, but then
we would be obliged to go clockwise.) Since x = 0 for this surface,

1 1 4
f(va)-da:/ / 4z%dydz = —.
o Jo 3
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Now, what about the line integral? We must break this up into four segments:

() x=0, z=0, v-dl=3y2dy, [v-dl=['3y’dy=1,

(i) x=0, y=1, v-dl=42dz, [v-dl= [ 4z2dz=

9

Wl A~

(i) x=0, z=1, v-dl=3y*dy, [v-dl=['3y*dy=—-1,

(iv) x=0, y=0, v-dl=0, [v-d1=[l0dz=0.
So
4 4
dl=14+=—1+0=—.
jgv +3 + 3
It checks.

A point of strategy: notice how I handled step (iii). There is a temptation to
write dl = —dy ¥ here, since the path goes to the left. You can get away with this,
if you absolutely insist, by running the integral from O — 1. But it is much safer
to say dl = dx X + dy § + dz zZ always (never any minus signs) and let the limits
of the integral take care of the direction.

Problem 1.34 Test Stokes’ theorem for the function v = (xy)X+ 2yz)y +
(3zx) Z, using the triangular shaded area of Fig. 1.34.

Problem 1.35 Check Corollary 1 by using the same function and boundary line as
in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of
the cube is open.

Z ZA *(V)
L]

2

vy | Qe T

2y / 1

X
5! l
(i)

FIGURE 1.34 FIGURE 1.35

<y

1.3.6 W Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product

rule for derivatives:
d dg df
dx(fg) =f (dx) +g<dx)-
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Integrating both sides, and invoking the fundamental theorem:

fab%(fg)dx = 7a. =fubf<;l—i>dx+/ubg<%>dx,
[ (G o= [ s (5 e s

That’s integration by parts. It applies to the situation in which you are called upon
to integrate the product of one function (/) and the derivative of another (g); it
says you can transfer the derivative from g to f, at the cost of a minus sign and a
boundary term.

or

(1.58)

b
S

Example 1.12. Evaluate the integral

(0,0
/ xe “dx.
0
Solution

The exponential can be expressed as a derivative:

—Xx d —X
e = E (—e ) ;

in this case, then, f(x) = x, g(x) = —e ", and df/dx = 1, so

o0 o0
f xe tdx = f e “dx —xe™*
0 0

We can exploit the product rules of vector calculus, together with the appro-
priate fundamental theorems, in exactly the same way. For example, integrating

o0

=1.

= —€
0

V- (fA=f(V-A)+A-(Vf)
over a volume, and invoking the divergence theorem, yields
fv-(fA)dr=/f(v-A)dr+fA-(Vf)dr=7§fA-da,
or
/f(V-A)dt:—/A-(Vf)dt+j£fA-da. (1.59)
A% % S

Here again the integrand is the product of one function ( f) and the derivative (in
this case the divergence) of another (A), and integration by parts licenses us to
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transfer the derivative from A to f (where it becomes a gradient), at the cost of a
minus sign and a boundary term (in this case a surface integral).

You might wonder how often one is likely to encounter an integral involving
the product of one function and the derivative of another; the answer is surpris-
ingly often, and integration by parts turns out to be one of the most powerful tools
in vector calculus.

Problem 1.36
(a) Show that

/f(VxA)-da:/[Ax(Vf)]-daJrf fA -dl. (1.60)
S S P

(b) Show that

fB-(VxA)dt:fA-(VxB)dt+§£(AxB)-da. (1.61)
v v S

1.4 B CURVILINEAR COORDINATES

1.4.1 B Spherical Coordinates

You can label a point P by its Cartesian coordinates (x, y, z), but sometimes it
is more convenient to use spherical coordinates (r, 6, ¢); r is the distance from
the origin (the magnitude of the position vector r), 6 (the angle down from the
z axis) is called the polar angle, and ¢ (the angle around from the x axis) is the
azimuthal angle. Their relation to Cartesian coordinates can be read from
Fig. 1.36:

X =rsinfcos @, y =rsinfsing, z=rcosf. (1.62)

Figure 1.36 also shows three unit vectors, T, 0 , qAS pointing in the direction of
increase of the corresponding coordinates. They constitute an orthogonal (mutu-
ally perpendicular) basis set (just like X, ¥, z), and any vector A can be expressed
in terms of them, in the usual way:

A=A T+A 0+ Ay (1.63)

A,, Ag, and A, are the radial, polar, and azimuthal components of A. In terms of
the Cartesian unit vectors,

I = sinfcos¢pX+sinfsingy + cosz,
0 = cosOcospX+coshsingy—sinfz, (1.64)
¢ = —sinpX+cosgy,

as you can check for yourself (Prob. 1.38). I have put these formulas inside the
back cover, for easy reference.
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ZA

AN
N
“y

FIGURE 1.36

But there is a poisonous snake lurking here that I'd better warn you about:
r, 0 and ¢ are associated with a pamcular point P, and they change direction
as P moves around. For example, r always points radially outward, but “radially
outward” can be the x direction, the y direction, or any other direction, depend-
ing on where you are. In Fig. 1.37, A =y and B = —y¥, and yet both of them
would be written as F in spherical coordinates. One could take account of this
by explicitly indicating the point of reference: £(8, ¢), 8(8, ¢), $(6, ¢), but this
would be cumbersome, and as long as you are alert to the problem, I don’t think it
will cause difficulties.” In particular, do not naively combine the spherical compo-
nents of vectors associated with different points (in Fig. 1.37, A + B = 0, not 2r,
and A - B = —1, not +1). Beware of differentiating a vector that is expressed in
spherical coordinates, since the unit vectors themselves are functions of position
(or/00 = é for example). And do not take T, é, and qAS outside an integral, as I
did with X, §, and z in Eq. 1.53. In general, if you’re uncertain about the validity
of an operation, rewrite the problem using Cartesian coordinates, for which this
difficulty does not arise.

An infinitesimal displacement in the F direction is simply dr (Fig. 1.38a), just
as an infinitesimal element of length in the x direction is dx:

dl, =dr. (1.65)
ZA
B A
-1 1 y
X
FIGURE 1.37

°I claimed back at the beginning that vectors have no location, and I’ll stand by that. The vectors
themselves live “out there,” completely independent of our choice of coordinates. But the notation we
use to represent them does depend on the point in question, in curvilinear coordinates.
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(2) (b)
FIGURE 1.38
On the other hand, an infinitesimal element of length in the 6 direction (Fig. 1.38b)

is not just df (that’s an angle—it doesn’t even have the right units for a length);
rather,

dly =rdo. (1.66)
Similarly, an infinitesimal element of length in the (3 direction (Fig. 1.38c¢) is
dly =rsinfde. (1.67)
Thus the general infinitesimal displacement d1 is
dl=drt+rdob+rsinddpé. (1.68)

This plays the role (in line integrals, for example) that dl = dx X+ dyy + dzz
played in Cartesian coordinates.

The infinitesimal volume element dt, in spherical coordinates, is the product
of the three infinitesimal displacements:

dt =dl, dlydly, = r*sin@ dr do d¢. (1.69)

I cannot give you a general expression for surface elements da, since these depend
on the orientation of the surface. You simply have to analyze the geometry for any
given case (this goes for Cartesian and curvilinear coordinates alike). If you are
integrating over the surface of a sphere, for instance, then r is constant, whereas
6 and ¢ change (Fig. 1.39), so

da; = dlydly ¥ = r*sinfdf dot.

On the other hand, if the surface lies in the xy plane, say, so that 6 is constant (to
wit: r/2) while r and ¢ vary, then

day =dl. dly0 =rdrdg.

Notice, finally, that r ranges from 0 to oo, ¢ from 0 to 27, and 6 from O to
(not 2r—that would count every point twice).'°

10 Alternatively, you could run ¢ from 0 to 77 (the “eastern hemisphere™) and cover the “western hemi-
sphere” by extending 6 from 7 up to 27. But this is very bad notation, since, among other things,
sin 6 will then run negative, and you’ll have to put absolute value signs around that term in volume
and surface elements (area and volume being intrinsically positive quantities).
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FIGURE 1.39

Example 1.13. Find the volume of a sphere of radius R.

R T 2
V:fdt:/ f f r2sin@drdo de
r=0J8=0 J ¢p=0
R T 2
=(/ rzdr><f sin9d9>(/ dqb)
0 0 0

R’ 2)(2 _4 R?
(?)()( 7T)—§7T

Solution

(not a big surprise).

So far we have talked only about the geometry of spherical coordinates. Now
I would like to “translate” the vector derivatives (gradient, divergence, curl, and
Laplacian) into r, 6, ¢ notation. In principle, this is entirely straightforward: in
the case of the gradient,

VT 8TA+8TA+8TA
= —X+ — —1,
ox 8yy 0z

for instance, we would first use the chain rule to expand the partials:

ar  oT (or +8T 00 +8T a¢

dx  dar \ox/) 90 \ax) a¢ \ox /)’
The terms in parentheses could be worked out from Eq. 1.62—or rather, the in-
verse of those equations (Prob. 1.37). Then we’d do the same for d7'/dy and

0T /dz. Finally, we’d substitute in the formulas for X, ¥, and Z in terms of T, 6,

and qa (Prob. 1.38). It would take an hour to figure out the gradient in spherical
coordinates by this brute-force method. I suppose this is how it was first done, but
there is a much more efficient indirect approach, explained in Appendix A, which
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has the extra advantage of treating all coordinate systems at once. I described the
“straightforward” method only to show you that there is nothing subtle or mys-
terious about transforming to spherical coordinates: you're expressing the same
quantity (gradient, divergence, or whatever) in different notation, that’s all.

Here, then, are the vector derivatives in spherical coordinates:

Gradient:
vr=2Lp 105, L 075 (1.70)
ar r 00 rsinf 9¢ ’
Divergence:
1 0
V.v= ——( 20,) + i (1.71)
nf 06 rsinf d¢
Curl:
0 0 . L[ 1 0dv, 0 A
Vxve —— | —(sinfvg) — 2 |3+ — | — 2 — L ruy) |6
rsinf | 09 ¢ r|sinf d¢  or
110 v, | ~
- — — . 1.72
+r[ar(rve) 3@]4’ (1.72)
Laplacian:

19 oT 1 oT 1 3T
V=2 (P8 L (ene )+ —— 22 (73
<r or ) t 2 sin0 90 (Sm ae) e apr 7Y

For reference, these formulas are listed inside the front cover.

Problem 1.37 Find formulas for r, 8, ¢ in terms of x, y, z (the inverse, in other
words, of Eq. 1.62).

Z (that is, derive

f’xéé(fs,...).
é (and 0, ).

° Problem 1.38 Express the unit vectors T, é d; in terms of

Xy,
Eq. 1.64). Check your answers several ways (f - £ = 1, 6 - ¢ = 0,
Also work out the inverse formulas, giving X, ¥, Z in terms of T, 6,

° Problem 1.39

(a) Check the divergence theorem for the function v, = r2F, using as your volume
the sphere of radius R, centered at the origin.

(b) Do the same for v, = (1/r?)f. (If the answer surprises you, look back at
Prob. 1.16.)

Problem 1.40 Compute the divergence of the function
v =(rcosf)t+ (rsin@) @ + (rsinf cos ¢) qAS

Check the divergence theorem for this function, using as your volume the inverted
hemispherical bowl of radius R, resting on the xy plane and centered at the origin
(Fig. 1.40).
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FIGURE 1.40 FIGURE 1.41

Problem 1.41 Compute the gradient and Laplacian of the function T = r(cos 6 +
sinf cos ¢). Check the Laplacian by converting 7" to Cartesian coordinates and
using Eq. 1.42. Test the gradient theorem for this function, using the path shown
in Fig. 1.41, from (0, 0, 0) to (0, 0, 2).

1.4.2 H Cylindrical Coordinates

The cylindrical coordinates (s, ¢, z) of a point P are defined in Fig. 1.42. Notice
that ¢ has the same meaning as in spherical coordinates, and z is the same as
Cartesian; s is the distance to P from the 7 axis, whereas the spherical coordinate
r is the distance from the origin. The relation to Cartesian coordinates is

X =5C0Sq, y =ssing, 7 =2z (1.74)

The unit vectors (Prob. 1.42) are

S = cospX+singy,
¢ = —sinpX—+cosgy, (1.75)
i = 1z

The infinitesimal displacements are

dly = ds, dly =sdo, dl, =dz, (1.76)
ZA
X z
\\\\ s R
\\\\\ P ¢
Z \?\\\
| ~
I s,
A | ’ S,
S~ s y
___q)______\_\_\::i//
X

FIGURE 1.42
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SO
dl=ds§+sdp +dz2, (1.77)

and the volume element is
dt =sdsd¢dz. (1.78)

The range of s is 0 — 00, ¢ goes from 0 — 2, and z from —oo to co.
The vector derivatives in cylindrical coordinates are:

Gradient:
VT 8T§+18TA+8TA (1.79)
= — -— — 7. .
as s 0¢ 0z
Divergence:
10 1dvy  Ov,
V.v=——(sv - 4+ —. 1.80
v sas(sv)+s8¢+8z (1.80)
Curl:
v 1dv, Juy s+ dvy,  dv; q§+1 8( ) avg | A
xv=|- - — — — | —(svy) — VA
s 0¢ 0z 0z as s las ? 0
(1.81)
Laplacian:
VT 19 (0T N 1 3°T N 9T (182)
= -\ 5— = A5 - A5 .
s ds \ ds s2 99?2 0972

These formulas are also listed inside the front cover.

Problem 1.42 Express the cylindrical unit vectors §, (3, Z in terms of X, ¥, Z (that is,
derive Eq. 1.75). “Invert” your formulas to get X, ¥, Z in terms of S, ¢, Z (and ¢).

FIGURE 1.43
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Problem 1.43

(a) Find the divergence of the function
v==s(2+sin’¢)§+ssingpcosd ¢ + 3z 2.

(b) Test the divergence theorem for this function, using the quarter-cylinder
(radius 2, height 5) shown in Fig. 1.43.

(¢) Find the curl of v.

1.5 B THE DIRAC DELTA FUNCTION

1.5.1 @ The Divergence of r/r?

Consider the vector function
1,
r
At every location, v is directed radially outward (Fig. 1.44); if ever there was a

function that ought to have a large positive divergence, this is it. And yet, when
you actually calculate the divergence (using Eq. 1.71), you get precisely zero:

19 1 19
Viv=—S— (;»2—) =——(1)=0. (1.84)
re or

2] r2or
(You will have encountered this paradox already, if you worked Prob. 1.16.) The
plot thickens when we apply the divergence theorem to this function. Suppose

we integrate over a sphere of radius R, centered at the origin (Prob. 1.38b); the
surface integral is

jév-da:/(%f’) - (R*sin0dh d¢ t)
T 21
= </ sin 6 d¢9> (f dd)) = 4. (1.85)
0 0

FIGURE 1.44
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But the volume integral, f V - vdr, is zero, if we are really to believe Eq. 1.84.
Does this mean that the divergence theorem is false? What’s going on here?

The source of the problem is the point » = 0, where v blows up (and where,
in Eq. 1.84, we have unwittingly divided by zero). It is quite true that V - v =0
everywhere except the origin, but right ar the origin the situation is more com-
plicated. Notice that the surface integral (Eq. 1.85) is independent of R; if the
divergence theorem is right (and it is), we should get [(V - v)dt = 4x for any
sphere centered at the origin, no matter how small. Evidently the entire contribu-
tion must be coming from the point » = 0! Thus, V - v has the bizarre property
that it vanishes everywhere except at one point, and yet its integral (over any
volume containing that point) is 4. No ordinary function behaves like that. (On
the other hand, a physical example does come to mind: the density (mass per unit
volume) of a point particle. It’s zero except at the exact location of the particle, and
yet its integral is finite—namely, the mass of the particle.) What we have stum-
bled on is a mathematical object known to physicists as the Dirac delta function.
It arises in many branches of theoretical physics. Moreover, the specific problem
at hand (the divergence of the function /7?) is not just some arcane curiosity—it
is, in fact, central to the whole theory of electrodynamics. So it is worthwhile to
pause here and study the Dirac delta function with some care.

1.5.2 H The One-Dimensional Dirac Delta Function

The one-dimensional Dirac delta function, §(x), can be pictured as an infinitely
high, infinitesimally narrow “spike,” with area 1 (Fig. 1.45). That is to say:

. 0, ifx #0
6(x) = { co. Fx =0 } (1.86)
and!!
o0
f S(x)dx = 1. (1.87)
A
d(x)
a—Area 1
a X
FIGURE 1.45

Notice that the dimensions of §(x) are one over the dimensions of its argument; if x is a length, 8 (x)

carries the units m~!.
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R 2
> ¥ Ry(x) T,0)
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FIGURE 1.46

Technically, §(x) is not a function at all, since its value is not finite at x = 0; in the
mathematical literature it is known as a generalized function, or distribution. It
is, if you like, the limit of a sequence of functions, such as rectangles R, (x), of
height n and width 1/n, or isosceles triangles 7,,(x), of height n and base 2/n
(Fig. 1.46).

If f(x) is some “ordinary” function (that is, not another delta function—in
fact, just to be on the safe side, let’s say that f(x) is continuous), then the product
f(x)d(x) is zero everywhere except at x = 0. It follows that

FX)8(x) = f(0)8(x). (1.88)

(This is the most important fact about the delta function, so make sure you under-
stand why it is true: since the product is zero anyway except at x = 0, we may as
well replace f(x) by the value it assumes at the origin.) In particular

/ fx)d(x)dx = f(O)/ d(x)dx = f(0). (1.89)

Under an integral, then, the delta function “picks out” the value of f(x) atx = 0.
(Here and below, the integral need not run from —oo to 4-00; it is sufficient that
the domain extend across the delta function, and —¢ to +¢ would do as well.)

Of course, we can shift the spike from x = 0 to some other point, x = a
(Fig. 1.47):

d(x—a)

«Areal

1
a

=y

FIGURE 1.47
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] o, ifx #£a . o B
S(x —a) = { 0, fx—a } with /_OOS(x—a)dx—l. (1.90)
Equation 1.88 becomes

fxX)(x —a)= f(a)d(x —a), (1.91)

and Eq. 1.89 generalizes to

/*00 f(xX)é(x —a)dx = f(a). (1.92)

Example 1.14. Evaluate the integral
3
f.f&x—@dx
0

Solution

The delta function picks out the value of x> at the point x = 2, so the integral
is 23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3), the
answer would be 0, because the spike would then be outside the domain of inte-
gration.

Although § itself is not a legitimate function, integrals over § are perfectly
acceptable. In fact, it’s best to think of the delta function as something that is
always intended for use under an integral sign. In particular, two expressions
involving delta functions (say, D;(x) and D, (x)) are considered equal if '

/ f(x)Dy(x)dx :f f(x)Dy(x)dx, (1.93)

for all (“ordinary”) functions f(x).

Example 1.15. Show that

d(kx) = %S(x), (1.94)

where k is any (nonzero) constant. (In particular, § (—x) = §(x).)
121 emphasize that the integrals must be equal for any f(x). Suppose Dj(x) and D(x) actually

differed, say, in the neighborhood of the point x = 17. Then we could pick a function f(x) that was
sharply peaked about x = 17, and the integrals would not be equal.
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Solution
For an arbitrary test function f(x), consider the integral

foo f(x)d(kx)dx.

Changing variables, we let y = kx, so that x = y/k, and dx = 1/kdy. If k is
positive, the integration still runs from —oo to 400, but if k is negative, then
x = oo implies y = —o0, and vice versa, so the order of the limits is reversed.
Restoring the “proper” order costs a minus sign. Thus

o0 o0 dy 1 1
f f)ékx)dx = ﬂ:/ f(y/k)S(y)% =+ f0) = mf(o)-

(The lower signs apply when k is negative, and we account for this neatly by
putting absolute value bars around the final k, as indicated.) Under the integral
sign, then, 8 (kx) serves the same purpose as (1/]k|)d(x):

f 8 0kx) dx = f ) [%5@] dx.

According to the criterion Eq. 1.93, therefore, 6 (kx) and (1/|k|)d(x) are equal.

Problem 1.44 Evaluate the following integrals:
(@) [y(3x>—2x —1)8(x — 3)dx.
(b) [ cosxd(x —7)dx.
(© f7x*8(x + Ddx.
(d) [ In(x +3)8(x +2) dx.
Problem 1.45 Evaluate the following integrals:
(a) [7,(2x +3)8(3x) dx.
() [ +3x +2)8(1 — x)dx.
© J' 9x?8(3x + 1) dx.
(d) [ 8(x —b)dx.
Problem 1.46
(a) Show that
x%(cS(x)) = —8(x).

[Hint: Use integration by parts.]
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(b) Let 6(x) be the step function:
1, ifx >0
O(x) = ) (1.95)
0, ifx <0

Show that d6/dx = §(x).

1.5.3 H The Three-Dimensional Delta Function

It is easy to generalize the delta function to three dimensions:
53 (r) = 8(x) 8(y) 8(2). (1.96)

(As always, r = xX + y ¥ + z Z is the position vector, extending from the origin
to the point (x, y, z).) This three-dimensional delta function is zero everywhere
except at (0, 0, 0), where it blows up. Its volume integral is 1:

/ 83(r)dt=/00 /OO foo §(x)8(y)8(zx)dxdydz = 1. (1.97)
all space —00 J —00 J —00

And, generalizing Eq. 1.92,
/ f@®)8(r —a)dr = f(a). (1.98)
all space

As in the one-dimensional case, integration with § picks out the value of the func-
tion f at the location of the spike.

We are now in a position to resolve the paradox introduced in Sect. 1.5.1.
As you will recall, we found that the divergence of /72 is zero everywhere ex-
cept at the origin, and yet its integral over any volume containing the origin is a
constant (to wit: 47r). These are precisely the defining conditions for the Dirac
delta function; evidently

r 3
Vl= =4 (). (1.99)
r
More generally,
&
V. (—2> = 478 (»), (1.100)
7

where, as always, % is the separation vector: 2 = r — r’. Note that differentiation
here is with respect to r, while 1’ is held constant. Incidentally, since

1 2
\% (—) =—= (1.101)
2 L
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(Prob. 1.13b), it follows that

LT
Vi = —dn8i(). (1.102)
2

Example 1.16. Evaluate the integral

A

J=f(r2+2)v-(iz> d,
v r

where V is a sphere!? of radius R centered at the origin.

Solution 1
Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral:

J = f (r* +2)4n83(r)dt = 47(0 + 2) = 87.
Vv

This one-line solution demonstrates something of the power and beauty of the
delta function, but I would like to show you a second method, which is much
more cumbersome but serves to illustrate the method of integration by parts
(Sect. 1.3.6).

Solution 2
Using Eq. 1.59, we transfer the derivative from £/72 to (r> 4 2):

J=—| - [V +2)ldt+ P (r"+2)= - da.
yr S r
The gradient is
V(r? 42) = 2rf,
so the volume integral becomes
2 2, . R )
—dt= | —-r°sinfdrdfdp =8n rdr =4n R”.
r r 0

Meanwhile, on the boundary of the sphere (where r = R),
da= R*sin0d0dot,

so the surface integral is
/(R2 +2)sin@d6 dp = 4 (R* + 2).

3In proper mathematical jargon, “sphere” denotes the surface, and “ball” the volume it encloses.
But physicists are (as usual) sloppy about this sort of thing, and I use the word “sphere” for both
the surface and the volume. Where the meaning is not clear from the context, I will write “spherical
surface” or “spherical volume.” The language police tell me that the former is redundant and the latter
an oxymoron, but a poll of my physics colleagues reveals that this is (for us) the standard usage.
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Putting it all together,
J = —4nR* + 47 (R* 4 2) = 87,

as before.

Problem 1.47

(a) Write an expression for the volume charge density o (r) of a point charge ¢ at
r’. Make sure that the volume integral of p equals g.

(b) What is the volume charge density of an electric dipole, consisting of a point
charge —q at the origin and a point charge +¢ at a?

(c) What is the volume charge density (in spherical coordinates) of a uniform, in-
finitesimally thin spherical shell of radius R and total charge Q, centered at the
origin? [Beware: the integral over all space must equal Q.]

Problem 1.48 Evaluate the following integrals:

(@) [(r*+r-a+a®)8(r—a)dr, where a is a fixed vector, a is its magnitude,
and the integral is over all space.

(b) [, Ir —b|*8*(5r) dt, where V is a cube of side 2, centered on the origin, and
b=4§+3

© [, [r*+r’@x-e) +c*] 8 (r — ¢)dr, where V is a sphere of radius 6 about the
origin, ¢ = 5X + 3y + 2Z, and c is its magnitude.

(d) fv r-(d—r)d*e —r)dr, whered = (1,2,3),e = (3,2, 1), and V is a sphere
of radius 1.5 centered at (2, 2, 2).

Problem 1.49 Evaluate the integral

r
J=/€_r<V‘—2)dT
v r

(where V is a sphere of radius R, centered at the origin) by two different methods,
as in Ex. 1.16.

1.6 @ THE THEORY OF VECTOR FIELDS

1.6.1 M The Helmholtz Theorem

Ever since Faraday, the laws of electricity and magnetism have been expressed
in terms of electric and magnetic fields, E and B. Like many physical laws,
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these are most compactly expressed as differential equations. Since E and B are
vectors, the differential equations naturally involve vector derivatives: divergence
and curl. Indeed, Maxwell reduced the entire theory to four equations, specifying
respectively the divergence and the curl of E and B.

Maxwell’s formulation raises an important mathematical question: To what
extent is a vector function determined by its divergence and curl? In other words,
if I tell you that the divergence of F (which stands for E or B, as the case may be)
is a specified (scalar) function D,

V-F=D,
and the curl of F is a specified (vector) function C,
V xF=C,
(for consistency, C must be divergenceless,
vV.C=0,

because the divergence of a curl is always zero), can you then determine the
function F?

Well. . . not quite. For example, as you may have discovered in Prob. 1.20, there
are many functions whose divergence and curl are both zero everywhere—the triv-
ial case F = 0, of course, but also F = yzX+ zxy +xyz, F =sinxcoshyx —
cos x sinh y y, etc. To solve a differential equation you must also be supplied with
appropriate boundary conditions. In electrodynamics we typically require that
the fields go to zero “at infinity” (far away from all charges).'* With that ex-
tra information, the Helmholtz theorem guarantees that the field is uniquely
determined by its divergence and curl. (The Helmholtz theorem is discussed in
Appendix B.)

1.6.2 H Potentials

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the
gradient of a scalar potential (V):

VXF=0&F=-VV. (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the follow-
ing theorem:

Theorem 1
Curl-less (or “irrotational”) fields. The following conditions are equivalent
(that is, F satisfies one if and only if it satisfies all the others):

4Tn some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric
field of an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary
conditions do not apply, and one must invoke symmetry arguments to determine the fields uniquely.
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(a) V x F = 0 everywhere.

() [ ab F - dl is independent of path, for any given end points.
(¢c) § F-dl =0 for any closed loop.

(d) F is the gradient of some scalar function: F = —VV.

The potential is not unique—any constant can be added to V with impunity, since
this will not affect its gradient.

If the divergence of a vector field (F) vanishes (everywhere), then F can be
expressed as the curl of a vector potential (A):

V. F=0&<F=V xA. (1.104)

That’s the main conclusion of the following theorem:

Theorem 2
Divergence-less (or “solenoidal”) fields. The following conditions are equivalent:

(a) V- F = 0 everywhere.
(b) [ F-daisindependent of surface, for any given boundary line.
(c) f F - da = 0 for any closed surface.

(d) F is the curl of some vector function: F =V x A,

The vector potential is not unique—the gradient of any scalar function can be
added to A without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save
for the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will
come later. Incidentally, in all cases (whatever its curl and divergence may be) a
vector field F can be written as the gradient of a scalar plus the curl of a vector: '

F=-VV+VxA (always). (1.105)

Problem 1.50

(a) Let F; = x*Z and F, = x X+ y ¥ + z Z. Calculate the divergence and curl of
F, and F,. Which one can be written as the gradient of a scalar? Find a scalar
potential that does the job. Which one can be written as the curl of a vector?
Find a suitable vector potential.

15n physics, the word field denotes generically any function of position (x, y, z) and time (¢). But in
electrodynamics two particular fields (E and B) are of such paramount importance as to preempt the
term. Thus technically the potentials are also “fields,” but we never call them that.



1.6 The Theory of Vector Fields 55

(b) Show that F3 = yzX + zx ¥y + xyZ can be written both as the gradient of a
scalar and as the curl of a vector. Find scalar and vector potentials for this func-
tion.

Problem 1.51 For Theorem 1, show that (d) = (a), (a) = (c), (¢) = (b), (b) = (¢),
and (¢) = (a).

Problem 1.52 For Theorem 2, show that (d) = (a), (a) = (c), (¢) = (b), (b) = (¢),
and (¢) = (a).

Problem 1.53

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a
scalar? Find a scalar function that does the job.

(b) Which can be expressed as the curl of a vector? Find such a vector.

More Problems on Chapter 1

Problem 1.54 Check the divergence theorem for the function
v=r2cosOF+r’cos¢pf —r’cossing ¢,

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure
you include the entire surface. [Answer: m R* /4]

Problem 1.55 Check Stokes’ theorem using the function v = ayX + bx ¥y (a and
b are constants) and the circular path of radius R, centered at the origin in the xy
plane. [Answer: m R*(b — a)]

Problem 1.56 Compute the line integral of
V=6%+y"y+ By +2)2

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’
theorem. [Answer: 8/3]

Problem 1.57 Compute the line integral of
v =(rcos20)F — (rcos@sind)h + 3rqA5

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coor-
dinates). Do it either in cylindrical or in spherical coordinates. Check your answer,
using Stokes’ theorem. [Answer: 31 /2]

FIGURE 1.48 FIGURE 1.49 FIGURE 1.50
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i

(0,0,a)
R 300
0.22.0) Y :
%,/ (@.0.0) x
FIGURE 1.51 FIGURE 1.52

Problem 1.58 Check Stokes’ theorem for the function v = y Z, using the triangular
surface shown in Fig. 1.51. [Answer: a*]

Problem 1.59 Check the divergence theorem for the function
v=r2sin0f+4r’cos0 0 + r2 tan6 ¢,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface
is spherical, with radius R and centered at the origin). [Answer: (7 R*/12)(27 +

3V3)]

Problem 1.60 Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (v = VT, in
this case). Show that the result is consistent with what you already knew about
second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show
that the result is consistent with what you already knew.

Problem 1.61 Although the gradient, divergence, and curl theorems are the fun-
damental integral theorems of vector calculus, it is possible to derive a number of
corollaries from them. Show that:

(@) [,(VT)dt = §s T da. [Hint: Let v = cT', where ¢ is a constant, in the diver-
gence theorem; use the product rules.]

(b) /,(V xv)dt = —§v x da. [Hint: Replace v by (v x ¢) in the divergence
theorem.]

(©) [LITVPU + (VT) - (VU)ldt = §5(TVU) - da. [Hint: Let v =TVU in the
divergence theorem.]

(d) [, (TV*U —UV?T)dt = §(TVU — UVT) - da. [Comment: This is some-
times called Green’s second identity; it follows from (c), which is known as
Green’s identity. ]

(e) [s VT xda= —¢,Tdl [Hint: Let v = cT in Stokes’ theorem.]
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Problem 1.62 The integral

as/ da (1.106)
s

is sometimes called the vector area of the surface S. If S happens to be flat, then
|a| is the ordinary (scalar) area, obviously.

(a) Find the vector area of a hemispherical bowl of radius R.
(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.61a.]
(c) Show that a is the same for all surfaces sharing the same boundary.

(d) Show that

azé%rxdl, (1.107)

where the integral is around the boundary line. [Hint: One way to do it is to draw
the cone subtended by the loop at the origin. Divide the conical surface up into
infinitesimal triangular wedges, each with vertex at the origin and opposite side d]1,
and exploit the geometrical interpretation of the cross product (Fig. 1.8).]

(e) Show that
f(c-r)dl:axc, (1.108)

for any constant vector ¢. [Hint: Let T = ¢ - r in Prob. 1.61e.]

Problem 1.63

(a) Find the divergence of the function

i P

V=

First compute it directly, as in Eq. 1.84. Test your result using the divergence theo-
rem, as in Eq. 1.85. Is there a delta function at the origin, as there was for £/r>? What
is the general formula for the divergence of #"r? [Answer: V - (r"T) = (n + 2)r"~!,
unless n = —2, in which case it is 47 83 (r); forn < —2, the divergence is ill-defined
at the origin.]

(b) Find the curl of r"f. Test your conclusion using Prob. 1.61b. [Answer:
V x (r"r) = 0]

Problem 1.64 In case you’re not persuaded that V2(1/r) = —478°(r) (Eq. 1.102
with r’ = 0 for simplicity), try replacing r by /> + €2, and watching what happens
as € — 0.'° Specifically, let

1 1
D(re) = —— V> ——.
(r,€) e o

16This problem was suggested by Frederick Strauch.
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To demonstrate that this goes to §*(r) as € — 0:

(a) Show that D(r, €) = (3€/4m)(r* + €>) /.

(b) Check that D(0,¢) — oo, as e — 0.

(c) Check that D(r,€) — 0,as e — 0, forall r # 0.

(d) Check that the integral of D(r, €) over all space is 1.
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Electrodynamics

7.1 B ELECTROMOTIVE FORCE

7.1.1 H Ohm’s Law

296

To make a current flow, you have to push on the charges. How fast they move,
in response to a given push, depends on the nature of the material. For most sub-
stances, the current density J is proportional to the force per unit charge, f:

J=of. (7.1)

The proportionality factor o (not to be confused with surface charge) is an empir-
ical constant that varies from one material to another; it’s called the conductivity
of the medium. Actually, the handbooks usually list the reciprocal of o, called
the resistivity: p = 1/o (not to be confused with charge density—I'm sorry, but
we’re running out of Greek letters, and this is the standard notation). Some typical
values are listed in Table 7.1. Notice that even insulators conduct slightly, though
the conductivity of a metal is astronomically greater; in fact, for most purposes
metals can be regarded as perfect conductors, with o = oo, while for insulators
we can pretend o = 0.

In principle, the force that drives the charges to produce the current could be
anything—chemical, gravitational, or trained ants with tiny harnesses. For our
purposes, though, it’s usually an electromagnetic force that does the job. In this
case Eq. 7.1 becomes

J=0E+vxB). (7.2)

Ordinarily, the velocity of the charges is sufficiently small that the second term
can be ignored:

J=0E. (7.3)

(However, in plasmas, for instance, the magnetic contribution to f can be signif-
icant.) Equation 7.3 is called Ohm’s law, though the physics behind it is really
contained in Eq. 7.1, of which 7.3 is just a special case.

I know: you’re confused because I said E = 0 inside a conductor (Sect. 2.5.1).
But that’s for stationary charges (J = 0). Moreover, for perfect conductors
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Material Resistivity Material Resistivity
Conductors: Semiconductors:

Silver 1.59 x 10~%  Sea water 0.2
Copper 1.68 x 10®  Germanium 0.46

Gold 2.21 x 10~ Diamond 2.7
Aluminum  2.65 x 107  Silicon 2500

Iron 9.61 x 1078  Insulators:

Mercury 9.61 x 10~7  Water (pure) 8.3 x 10
Nichrome 1.08 x 107®  Glass 10° — 10
Manganese  1.44 x 107 Rubber 103 — 10"
Graphite 1.6 x 107> Teflon 1022 — 10%

TABLE 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20° C). Data from
Handbook of Chemistry and Physics, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and
other references.

E = J/o = 0 even if current is flowing. In practice, metals are such good con-
ductors that the electric field required to drive current in them is negligible. Thus
we routinely treat the connecting wires in electric circuits (for example) as equipo-
tentials. Resistors, by contrast, are made from poorly conducting materials.

Example 7.1. A cylindrical resistor of cross-sectional area A and length L is
made from material with conductivity o. (See Fig. 7.1; as indicated, the cross
section need not be circular, but I do assume it is the same all the way down.) If we
stipulate that the potential is constant over each end, and the potential difference
between the ends is V, what current flows?

A E
—
Z
L
FIGURE 7.1

Solution
As it turns out, the electric field is uniform within the wire (I’ll prove this in a
moment). It follows from Eq. 7.3 that the current density is also uniform, so

oA

I =JA=0cFA=—YV.
L
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Example 7.2. Two long coaxial metal cylinders (radii a and b) are separated
by material of conductivity o (Fig. 7.2). If they are maintained at a potential
difference V, what current flows from one to the other, in a length L?

te

/\ M
0 i
/
b __ __ /
Y
L
FIGURE 7.2
Solution
The field between the cylinders is
)\‘ A
E = S,
2 €0S

where A is the charge per unit length on the inner cylinder. The current is therefore

1=[J-da=afE-da=3,\L.
€0

(The integral is over any surface enclosing the inner cylinder.) Meanwhile, the
potential difference between the cylinders is

“ A b
V:—/ E-dl = ln(—),
b 2meg a

B 2oL
~In(b/a)

SO

As these examples illustrate, the total current flowing from one electrode to
the other is proportional to the potential difference between them:

V =1IR. (7.4)

This, of course, is the more familiar version of Ohm’s law. The constant of propor-
tionality R is called the resistance; it’s a function of the geometry of the arrange-
ment and the conductivity of the medium between the electrodes. (In Ex. 7.1,
R=(L/ocA);inEx.7.2, R =1In(b/a)/2rwo L.) Resistance is measured in ohms
(£2): an ohm is a volt per ampere. Notice that the proportionality between V and [
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is a direct consequence of Eq. 7.3: if you want to double V, you simply double the
charge on the electrodes—that doubles E, which (for an ohmic material) doubles
J, which doubles /.

For steady currents and uniform conductivity,

1
V-E=-V.J=0, (7.5)
o

(Eq. 5.33), and therefore the charge density is zero; any unbalanced charge re-
sides on the surface. (We proved this long ago, for the case of stationary charges,
using the fact that E = 0; evidently, it is still true when the charges are allowed
to move.) It follows, in particular, that Laplace’s equation holds within a homo-
geneous ohmic material carrying a steady current, so all the tools and tricks of
Chapter 3 are available for calculating the potential.

Example 7.3. 1 asserted that the field in Ex. 7.1 is uniform. Let’s prove it.

Solution

Within the cylinder V obeys Laplace’s equation. What are the boundary condi-
tions? At the left end the potential is constant—we may as well set it equal to
zero. At the right end the potential is likewise constant—call it Vj. On the cylin-
drical surface, J - i = 0, or else charge would be leaking out into the surround-
ing space (which we take to be nonconducting). Therefore E - i = 0, and hence
dV/on = 0. With V or its normal derivative specified on all surfaces, the poten-
tial is uniquely determined (Prob. 3.5). But it’s easy to guess one potential that

obeys Laplace’s equation and fits these boundary conditions:
V()Z
V() = —,
(2) 7

where z is measured along the axis. The uniqueness theorem guarantees that this
is the solution. The corresponding field is

Vo
E=-VV=——17
L

which is indeed uniform. O

Contrast the enormously more difficult problem that arises if the conducting
material is removed, leaving only a metal plate at either end (Fig. 7.3). Evidently

o0

E

[

FIGURE 7.3
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in the present case charge arranges itself over the surface of the wire in just such
a way as to produce a nice uniform field within.!

I don’t suppose there is any formula in physics more familiar than Ohm’s law,
and yet it’s not really a true law, in the sense of Coulomb’s or Ampere’s; rather,
it is a “rule of thumb” that applies pretty well to many substances. You’re not
going to win a Nobel prize for finding an exception. In fact, when you stop to
think about it, it’s a little surprising that Ohm’s law ever holds. After all, a given
field E produces a force gE (on a charge ¢), and according to Newton’s second
law, the charge will accelerate. But if the charges are accelerating, why doesn’t
the current increase with time, growing larger and larger the longer you leave
the field on? Ohm’s law implies, on the contrary, that a constant field produces a
constant current, which suggests a constant velocity. Isn’t that a contradiction to
Newton’s law?

No, for we are forgetting the frequent collisions electrons make as they pass
down the wire. It’s a little like this: Suppose you’re driving down a street with
a stop sign at every intersection, so that, although you accelerate constantly in
between, you are obliged to start all over again with each new block. Your average
speed is then a constant, in spite of the fact that (save for the periodic abrupt stops)
you are always accelerating. If the length of a block is A and your acceleration is
a, the time it takes to go a block is

2

t=,—,

a
and hence your average velocity is

1 Aa
Uave == zal' == 7.

But wait! That’s no good either! It says that the velocity is proportional to the
square root of the acceleration, and therefore that the current should be propor-
tional to the square root of the field! There’s another twist to the story: In practice,
the charges are already moving very fast because of their thermal energy. But the
thermal velocities have random directions, and average to zero. The drift velocity
we are concerned with is a tiny extra bit (Prob. 5.20). So the time between col-
lisions is actually much shorter than we supposed; if we assume for the sake of
argument that all charges travel the same distance A between collisions, then

A
I =

9
Uthermal

and therefore

ai

! t
2 2vthermal

Calculating this surface charge is not easy. See, for example, J. D. Jackson, Am. J. Phys. 64, 855
(1996). Nor is it a simple matter to determine the field outside the wire—see Prob. 7.43.
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If there are n molecules per unit volume, and f free electrons per molecule, each
with charge ¢ and mass m, the current density is

nfgi E:( nfig? )E

2vthermal m 2m Uthermal

J=nfqvae = (7.6)
I don’t claim that the term in parentheses is an accurate formula for the con-
ductivity,? but it does indicate the basic ingredients, and it correctly predicts that
conductivity is proportional to the density of the moving charges and (ordinarily)
decreases with increasing temperature.

As a result of all the collisions, the work done by the electrical force is con-
verted into heat in the resistor. Since the work done per unit charge is V and the
charge flowing per unit time is /, the power delivered is

P=VI=1IR. (7.7)

This is the Joule heating law. With / in amperes and R in ohms, P comes out in
watts (joules per second).

Problem 7.1 Two concentric metal spherical shells, of radius a and b, respectively,
are separated by weakly conducting material of conductivity o (Fig. 7.4a).

(a) If they are maintained at a potential difference V, what current flows from one
to the other?

(b) What is the resistance between the shells?

(c) Notice that if b > a the outer radius () is irrelevant. How do you account
for that? Exploit this observation to determine the current flowing between two
metal spheres, each of radius a, immersed deep in the sea and held quite far apart
(Fig. 7.4b), if the potential difference between them is V. (This arrangement can
be used to measure the conductivity of sea water.)

A Coh

(a) (b)
FIGURE 74
2This classical model (due to Drude) bears little resemblance to the modern quantum theory of con-

ductivity. See, for instance, D. Park’s Introduction to the Quantum Theory, 3rd ed., Chap. 15 (New
York: McGraw-Hill, 1992).
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Problem 7.2 A capacitor C has been charged up to potential Vj; at time t = 0, it is
connected to a resistor R, and begins to discharge (Fig. 7.5a).

7o —

D) Ex

(a) (b)
FIGURE 7.5

QII

(a) Determine the charge on the capacitor as a function of time, Q(¢). What is the
current through the resistor, I (¢)?

(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating
Eq. 7.7, confirm that the heat delivered to the resistor is equal to the energy lost
by the capacitor.

Now imagine charging up the capacitor, by connecting it (and the resistor) to
a battery of voltage Vj, at time ¢t = 0 (Fig. 7.5b).

(c) Again, determine Q(¢) and I (z).

(d) Find the total energy output of the battery ([ VoI dr). Determine the heat de-
livered to the resistor. What is the final energy stored in the capacitor? What
fraction of the work done by the battery shows up as energy in the capacitor?
[Notice that the answer is independent of R!]

Problem 7.3

(a) Two metal objects are embedded in weakly conducting material of conductivity
o (Fig. 7.6). Show that the resistance between them is related to the capacitance
of the arrangement by

€0
oC’

(b) Suppose you connected a battery between 1 and 2, and charged them up to
a potential difference V,. If you then disconnect the battery, the charge will
gradually leak off. Show that V (1) = Vpe"/%, and find the time constant, 7, in
terms of €y and o.

FIGURE 7.6
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Problem 7.4 Suppose the conductivity of the material separating the cylinders in
Ex. 7.2 is not uniform; specifically, o (s) = k/s, for some constant k. Find the re-
sistance between the cylinders. [Hint: Because o is a function of position, Eq. 7.5
does not hold, the charge density is not zero in the resistive medium, and E does
not go like 1/s. But we do know that for steady currents / is the same across each
cylindrical surface. Take it from there.]

7.1.2 W Electromotive Force

If you think about a typical electric circuit—a battery hooked up to a light bulb,
say (Fig. 7.7)—a perplexing question arises: In practice, the current is the same all
the way around the loop; why is this the case, when the only obvious driving force
is inside the battery? Off hand, you might expect a large current in the battery and
none at all in the lamp. Who’s doing the pushing, in the rest of the circuit, and how
does it happen that this push is exactly right to produce the same current in each
segment? What’s more, given that the charges in a typical wire move (literally)
at a snail’s pace (see Prob. 5.20), why doesn’t it take half an hour for the current
to reach the light bulb? How do all the charges know to start moving at the same
instant?

Answer: If the current were not the same all the way around (for instance, dur-
ing the first split second after the switch is closed), then charge would be piling up
somewhere, and—here’s the crucial point—the electric field of this accumulating
charge is in such a direction as to even out the flow. Suppose, for instance, that
the current into the bend in Fig. 7.8 is greater than the current out. Then charge
piles up at the “knee,” and this produces a field aiming away from the kink.? This
field opposes the current flowing in (slowing it down) and promotes the current
flowing out (speeding it up) until these currents are equal, at which point there is
no further accumulation of charge, and equilibrium is established. It’s a beautiful
system, automatically self-correcting to keep the current uniform, and it does it
all so quickly that, in practice, you can safely assume the current is the same all
around the circuit, even in systems that oscillate at radio frequencies.

FIGURE 7.7 FIGURE 7.8

3The amount of charge involved is surprisingly small—see W. G. V. Rosser, Am. J. Phys. 38, 265
(1970); nevertheless, the resulting field can be detected experimentally—see R. Jacobs, A. de Salazar,
and A. Nassar, Am. J. Phys. 78, 1432 (2010).
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There are really two forces involved in driving current around a circuit: the
source, £y, which is ordinarily confined to one portion of the loop (a battery, say),
and an electrostatic force, which serves to smooth out the flow and communicate
the influence of the source to distant parts of the circuit:

f=f, +E. (7.8)

The physical agency responsible for f; can be many different things: in a battery
it’s a chemical force; in a piezoelectric crystal mechanical pressure is converted
into an electrical impulse; in a thermocouple it’s a temperature gradient that does
the job; in a photoelectric cell it’s light; and in a Van de Graaff generator the
electrons are literally loaded onto a conveyer belt and swept along. Whatever the
mechanism, its net effect is determined by the line integral of f around the circuit:

55%f~dl=§£fs-dl. (7.9)

(Because 95 E - dl = 0 for electrostatic fields, it doesn’t matter whether you use
f or f;.) £ is called the electromotive force, or emf, of the circuit. It’s a lousy
term, since this is not a force at all—it’s the integral of a force per unit charge.
Some people prefer the word electromotance, but emf is so established that I
think we’d better stick with it.

Within an ideal source of emf (a resistanceless battery,4 for instance), the net
force on the charges is zero (Eq. 7.1 with 0 = 00), so E = —f. The potential
difference between the terminals (a and b) is therefore

b b
V=—/ E-dl:/fs-dl=j£fs-dl=5 (7.10)

(we can extend the integral to the entire loop because f; = 0 outside the source).
The function of a battery, then, is to establish and maintain a voltage difference
equal to the electromotive force (a 6 V battery, for example, holds the positive ter-
minal 6 V above the negative terminal). The resulting electrostatic field drives cur-
rent around the rest of the circuit (notice, however, that inside the battery f; drives
current in the direction opposite to E).

Because it’s the line integral of f;, £ can be interpreted as the work done per
unit charge, by the source—indeed, in some books electromotive force is defined
this way. However, as you’ll see in the next section, there is some subtlety in-
volved in this interpretation, so I prefer Eq. 7.9.

4Real batteries have a certain internal resistance, r, and the potential difference between their termi-
nals is £ — Ir, when a current / is flowing. For an illuminating discussion of how batteries work, see
D. Roberts, Am. J. Phys. 51, 829 (1983).

3Current in an electric circuit is somewhat analogous to the flow of water in a closed system of pipes,
with gravity playing the role of the electrostatic field, and a pump (lifting the water up against gravity)
in the role of the battery. In this story height is analogous to voltage.
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Problem 7.5 A battery of emf £ and internal resistance r is hooked up to a variable
“load” resistance, R. If you want to deliver the maximum possible power to the
load, what resistance R should you choose? (You can’t change £ and r, of course.)

Yavd §R
; \
+c  E4

FIGURE 7.9

Problem 7.6 A rectangular loop of wire is situated so that one end (height &) is
between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the
field E. The other end is way outside, where the field is essentially zero. What
is the emf in this loop? If the total resistance is R, what current flows? Explain.
[Warning: This is a trick question, so be careful; if you have invented a perpetual
motion machine, there’s probably something wrong with it.]

7.1.3 B Motional emf

In the last section, I listed several possible sources of electromotive force, batteries
being the most familiar. But I did not mention the commonest one of all: the
generator. Generators exploit motional emfs, which arise when you move a wire
through a magnetic field. Figure 7.10 suggests a primitive model for a generator.
In the shaded region there is a uniform magnetic field B, pointing into the page,
and the resistor R represents whatever it is (maybe a light bulb or a toaster) we’re
trying to drive current through. If the entire loop is pulled to the right with speed v,
the charges in segment ab experience a magnetic force whose vertical component
qv B drives current around the loop, in the clockwise direction. The emf is

5=y§fmag-d1=v3h, (7.11)

where £ is the width of the loop. (The horizontal segments bc and ad contribute
nothing, since the force there is perpendicular to the wire.)

Notice that the integral you perform to calculate £ (Eq. 7.9 or 7.11) is carried
out at one instant of time—take a “snapshot” of the loop, if you like, and work

]
¢
£

FIGURE 7.10
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from that. Thus d1, for the segment ab in Fig. 7.10, points straight up, even though
the loop is moving to the right. You can’t quarrel with this—it’s simply the way
emf is defined—but it is important to be clear about it.

In particular, although the magnetic force is responsible for establishing the
emf, it is not doing any work—magnetic forces never do work. Who, then, is
supplying the energy that heats the resistor? Answer: The person who’s pulling on
the loop. With the current flowing, the free charges in segment ab have a vertical
velocity (call it u) in addition to the horizontal velocity v they inherit from the
motion of the loop. Accordingly, the magnetic force has a component gu B to the
left. To counteract this, the person pulling on the wire must exert a force per unit
charge

fpull =uB

to the right (Fig. 7.11). This force is transmitted to the charge by the structure of
the wire.

Meanwhile, the particle is actually moving in the direction of the resultant ve-
locity w, and the distance it goes is (h/ cos 8). The work done per unit charge is
therefore

h )
/fpull -dl = (uB) (—) sinf = vBh =¢&
cos 6

(sin @ coming from the dot product). As it turns out, then, the work done per unit
charge is exactly equal to the emf, though the integrals are taken along entirely
different paths (Fig. 7.12), and completely different forces are involved. To calcu-
late the emf, you integrate around the loop at one instant, but to calculate the work
done you follow a charge in its journey around the loop; £, contributes nothing to
the emf, because it is perpendicular to the wire, whereas f,,, contributes nothing
to work because it is perpendicular to the motion of the charge.®

There is a particularly nice way of expressing the emf generated in a moving
loop. Let @ be the flux of B through the loop:

® = /B-da. (7.12)

pull

FIGURE 7.11

SFor further discussion, see E. P. Mosca, Am. J. Phys. 42, 295 (1974).
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b . c b . ¢
h A Y
h/cos ©
al
a B d a a N d
(a) Integration path for computing (b) Integration path for calculating work
£ (follow the wire at one instant done (follow the charge around the loop).
of time).
FIGURE 7.12

For the rectangular loop in Fig. 7.10,
® = Bhx.

As the loop moves, the flux decreases:

do dx

— = Bh— = —Bhv.

dt dt v
(The minus sign accounts for the fact that dx /dt is negative.) But this is precisely
the emf (Eq. 7.11); evidently the emf generated in the loop is minus the rate of
change of flux through the loop:

= . 7.13
& dt ( )

This is the flux rule for motional emf.

Apart from its delightful simplicity, the flux rule has the virtue of applying to
nonrectangular loops moving in arbitrary directions through nonuniform mag-
netic fields; in fact, the loop need not even maintain a fixed shape.

Proof. Figure 7.13 shows a loop of wire at time ¢, and also a short time dt later.
Suppose we compute the flux at time ¢, using surface S, and the flux at time
t + dt, using the surface consisting of S plus the “ribbon” that connects the new
position of the loop to the old. The change in flux, then, is

d(I)ZCD(t-l-dI)—(D(I):CDribbon:/ B - da.
ribbon

Focus your attention on point P: in time d, it moves to P’. Let v be the velocity of
the wire, and u the velocity of a charge down the wire; w = v + u is the resultant
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Surface S

Loop at
time ¢ time (¢ + df)

Enlargement of da

FIGURE 7.13

velocity of a charge at P. The infinitesimal element of area on the ribbon can be

written as
da = (vxdl)dt
(see inset in Fig. 7.13). Therefore

dod
—=¢B-(del).
dt
Since w = (v 4+ u) and u is parallel to dl, we can just as well write this as
dod
—=¢B- dl).
dt % (wxd

Now, the scalar triple-product can be rewritten:
B-(wxdl)=—(wxB)-dl,
SO

d® ?g( B) - dl
—=—0 (WX -dl.
dt

But (w x B) is the magnetic force per unit charge, f;,,6, SO

dd
- = fma\ . dla
dt j£ £

and the integral of f,,, is the emf:

do
dt

O

There is a sign ambiguity in the definition of emf (Eq. 7.9): Which way around
the loop are you supposed to integrate? There is a compensatory ambiguity in the
definition of flux (Eq. 7.12): Which is the positive direction for da? In applying
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B (into page)

FIGURE 7.14

the flux rule, sign consistency is governed (as always) by your right hand: If your
fingers define the positive direction around the loop, then your thumb indicates
the direction of da. Should the emf come out negative, it means the current will
flow in the negative direction around the circuit.

The flux rule is a nifty short-cut for calculating motional emfs. It does not con-
tain any new physics—just the Lorentz force law. But it can lead to error or ambi-
guity if you’re not careful. The flux rule assumes you have a single wire loop—it
can move, rotate, stretch, or distort (continuously), but beware of switches, sliding
contacts, or extended conductors allowing a variety of current paths. A standard
“flux rule paradox” involves the circuit in Figure 7.14. When the switch is thrown
(from a to b) the flux through the circuit doubles, but there’s no motional emf
(no conductor moving through a magnetic field), and the ammeter (A) records no
current.

Example 7.4. A metal disk of radius a rotates with angular velocity w about a
vertical axis, through a uniform field B, pointing up. A circuit is made by connect-
ing one end of a resistor to the axle and the other end to a sliding contact, which
touches the outer edge of the disk (Fig. 7.15). Find the current in the resistor.

Bﬂ “B

(Sliding contact)

i)t

FIGURE 7.15

Solution
The speed of a point on the disk at a distance s from the axis is v = ws, so the
force per unit charge is fi,,, = v X B = ws BS. The emf is therefore

a a B 2
ng fmagds=wa Sds=a) a s
0 0 2
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and the current is

I=£=
R

Example 7.4 (the Faraday disk, or Faraday dynamo) involves a motional
emf that you can’t calculate (at least, not directly) from the flux rule. The flux rule
assumes the current flows along a well-defined path, whereas in this example the
current spreads out over the whole disk. It’s not even clear what the “flux through
the circuit” would mean in this context.

Even more tricky is the case of eddy currents. Take a chunk of aluminum
(say), and shake it around in a nonuniform magnetic field. Currents will be gen-
erated in the material, and you will feel a kind of “viscous drag”—as though you
were pulling the block through molasses (this is the force I called f,y in the dis-
cussion of motional emf). Eddy currents are notoriously difficult to calculate,” but
easy and dramatic to demonstrate. You may have witnessed the classic experiment
in which an aluminum disk mounted as a pendulum on a horizontal axis swings
down and passes between the poles of a magnet (Fig. 7.16a). When it enters the
field region it suddenly slows way down. To confirm that eddy currents are re-
sponsible, one repeats the demonstration using a disk that has many slots cut in it,
to prevent the flow of large-scale currents (Fig. 7.16b). This time the disk swings
freely, unimpeded by the field.

(a) (b)
FIGURE 7.16

Problem 7.7 A metal bar of mass m slides frictionlessly on two parallel conducting
rails a distance / apart (Fig. 7.17). A resistor R is connected across the rails, and a
uniform magnetic field B, pointing into the page, fills the entire region.

7See, for example, W. M. Saslow, Am. J. Phys., 60, 693 (1992).
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R § I -

m
FIGURE 7.17

(a) If the bar moves to the right at speed v, what is the current in the resistor? In
what direction does it flow?

(b) What is the magnetic force on the bar? In what direction?

(c) If the bar starts out with speed vy at time ¢ = 0, and is left to slide, what is its
speed at a later time #?

(d) The initial kinetic energy of the bar was, of course, %mvoz. Check that the en-

ergy delivered to the resistor is exactly %mvoz.

Problem 7.8 A square loop of wire (side a) lies on a table, a distance s from a very
long straight wire, which carries a current /, as shown in Fig. 7.18.

a

lca]

~Y

FIGURE 7.18

(a) Find the flux of B through the loop.

(b) If someone now pulls the loop directly away from the wire, at speed v, what
emf is generated? In what direction (clockwise or counterclockwise) does the
current flow?

(c) What if the loop is pulled to the right at speed v?

Problem 7.9 An infinite number of different surfaces can be fit to a given boundary
line, and yet, in defining the magnetic flux through a loop, ® = [ B - da, I never
specified the particular surface to be used. Justify this apparent oversight.

Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at
angular velocity o (Fig. 7.19). A uniform magnetic field B points to the right. Find
the £(¢) for this alternating current generator.

Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed
so that the top portion is in a uniform magnetic field B, and is allowed to fall under
gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into
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the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note:
The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated.]

|l >So
[ ——
—_— a
—>
FIGURE 7.19 FIGURE 7.20

7.2 B ELECTROMAGNETIC INDUCTION

7.2.1 W Faraday’s Law

In 1831 Michael Faraday reported on a series of experiments, including three that
(with some violence to history) can be characterized as follows:

Experiment 1. He pulled a loop of wire to the right through a magnetic field
(Fig. 7.21a). A current flowed in the loop.

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.21b).
Again, a current flowed in the loop.

Experiment 3. With both the loop and the magnet at rest (Fig. 7.21c), he changed
the strength of the field (he used an electromagnet, and varied the current
in the coil). Once again, current flowed in the loop.

2l 2| O

B (in) B (in) B

(a) (b) ¥ (c)
changing

magnetic field

FIGURE 7.21
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The first experiment, of course, is a straightforward case of motional emf;
according to the flux rule:
dd

Cdr

I don’t think it will surprise you to learn that exactly the same emf arises in Ex-
periment 2—all that really matters is the relative motion of the magnet and the
loop. Indeed, in the light of special relativity it has to be so. But Faraday knew
nothing of relativity, and in classical electrodynamics this simple reciprocity is a
remarkable coincidence. For if the loop moves, it’s a magnetic force that sets up
the emf, but if the loop is stationary, the force cannot be magnetic—stationary
charges experience no magnetic forces. In that case, what is responsible? What
sort of field exerts a force on charges at rest? Well, electric fields do, of course,
but in this case there doesn’t seem to be any electric field in sight.
Faraday had an ingenious inspiration:

A changing magnetic field induces an electric field.

It is this induced? electric field that accounts for the emf in Experiment 2.2 Indeed,
if (as Faraday found empirically) the emf is again equal to the rate of change of
the flux,

do
SzygE-dl:——, (7.14)
dt
then E is related to the change in B by the equation
oB
fE-dl:—/a-da. (7.15)

This is Faraday’s law, in integral form. We can convert it to differential form by
applying Stokes’ theorem:

VxE=——. 7.16
X o7 (7.16)

8<Induce” is a subtle and slippery verb. It carries a faint odor of causation (“produce” would make
this explicit) without quite committing itself. There is a sterile ongoing debate in the literature as to
whether a changing magnetic field should be regarded as an independent “source” of electric fields
(along with electric charge)—after all, the magnetic field itself is due to electric currents. It’s like
asking whether the postman is the “source” of my mail. Well, sure—he delivered it to my door. On the
other hand, Grandma wrote the letter. Ultimately, p and J are the sources of all electromagnetic fields,
and a changing magnetic field merely delivers electromagnetic news from currents elsewhere. But it
is often convenient to think of a changing magnetic field “producing” an electric field, and it won’t
hurt you as long as you understand that this is the condensed version of a more complicated story. For
a nice discussion, see S. E. Hill, Phys. Teach. 48, 410 (2010).

?You might argue that the magnetic field in Experiment 2 is not really changing—just moving. What
I mean is that if you sit at a fixed location, the field you experience changes as the magnet passes by.
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Note that Faraday’s law reduces to the old rule f E - dl = 0 (or, in differential
form, V x E = 0) in the static case (constant B) as, of course, it should.

In Experiment 3, the magnetic field changes for entirely different reasons, but
according to Faraday’s law an electric field will again be induced, giving rise to
an emf —d ®/dt. Indeed, one can subsume all three cases (and for that matter any
combination of them) into a kind of universal flux rule:

Whenever (and for whatever reason) the magnetic flux through a
loop changes, an emf

do
=—— 7.17
2 T (7.17)

will appear in the loop.

Many people call this “Faraday’s law.” Maybe I’'m overly fastidious, but I find this
confusing. There are really rwo totally different mechanisms underlying Eq. 7.17,
and to identify them both as “Faraday’s law” is a little like saying that because
identical twins look alike we ought to call them by the same name. In Faraday’s
first experiment it’s the Lorentz force law at work; the emf is magnetic. But in the
other two it’s an electric field (induced by the changing magnetic field) that does
the job. Viewed in this light, it is quite astonishing that all three processes yield
the same formula for the emf. In fact, it was precisely this “coincidence” that led
Einstein to the special theory of relativity—he sought a deeper understanding of
what is, in classical electrodynamics, a peculiar accident. But that’s a story for
Chapter 12. In the meantime, I shall reserve the term “Faraday’s law” for electric
fields induced by changing magnetic fields, and I do not regard Experiment 1 as
an instance of Faraday’s law.

Example 7.5. A long cylindrical magnet of length L and radius a carries a uni-
form magnetization M parallel to its axis. It passes at constant velocity v through
a circular wire ring of slightly larger diameter (Fig. 7.22). Graph the emf induced
in the ring, as a function of time.

/

UV 44—

Solution

The magnetic field is the same as that of a long solenoid with surface current

K,=M qAS So the field inside is B = oM, except near the ends, where it starts
to spread out. The flux through the ring is zero when the magnet is far away; it

FIGURE 7.22
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builds up to a maximum of poMma? as the leading end passes through; and it
drops back to zero as the trailing end emerges (Fig. 7.23a). The emf is (minus)

the derivative of ® with respect to time, so it consists of two spikes, as shown in
Fig. 7.23b.

3 g

woMrmna? m jL
| I I t | I I t
Llv \\[,
(a) (b)

FIGURE 7.23

Keeping track of the signs in Faraday’s law can be a real headache. For in-
stance, in Ex. 7.5 we would like to know which way around the ring the induced
current flows. In principle, the right-hand rule does the job (we called @ positive
to the left, in Fig. 7.22, so the positive direction for current in the ring is counter-
clockwise, as viewed from the left; since the first spike in Fig. 7.23b is negative,
the first current pulse flows clockwise, and the second counterclockwise). But
there’s a handy rule, called Lenz’s law, whose sole purpose is to help you get the
directions right:'”

Nature abhors a change in flux.

The induced current will flow in such a direction that the flux it produces tends
to cancel the change. (As the front end of the magnet in Ex. 7.5 enters the ring,
the flux increases, so the current in the ring must generate a field to the right—it
therefore flows clockwise.) Notice that it is the change in flux, not the flux it-
self, that nature abhors (when the tail end of the magnet exits the ring, the flux
drops, so the induced current flows counterclockwise, in an effort to restore it).
Faraday induction is a kind of “inertial” phenomenon: A conducting loop “likes”
to maintain a constant flux through it; if you try to change the flux, the loop re-
sponds by sending a current around in such a direction as to frustrate your efforts.
(It doesn’t succeed completely; the flux produced by the induced current is typi-
cally only a tiny fraction of the original. All Lenz’s law tells you is the direction of
the flow.)

101 enz’s law applies to motional emfs, too, but for them it is usually easier to get the direction of the
current from the Lorentz force law.
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Example 7.6. The “jumping ring” demonstration. If you wind a solenoidal
coil around an iron core (the iron is there to beef up the magnetic field), place
a metal ring on top, and plug it in, the ring will jump several feet in the air
(Fig. 7.24). Why?

B

Ve

<> ring

D

PD— d{~ D solenoid

b
= D

FIGURE 7.24

Solution

Before you turned on the current, the flux through the ring was zero. Afterward a
flux appeared (upward, in the diagram), and the emf generated in the ring led to a
current (in the ring) which, according to Lenz’s law, was in such a direction that
its field tended to cancel this new flux. This means that the current in the loop is
opposite to the current in the solenoid. And opposite currents repel, so the ring
flies off.!!

Problem 7.12 A long solenoid, of radius a, is driven by an alternating current, so
that the field inside is sinusoidal: B(r) = By cos(wt) z. A circular loop of wire, of
radius a/2 and resistance R, is placed inside the solenoid, and coaxial with it. Find
the current induced in the loop, as a function of time.

Problem 7.13 A square loop of wire, with sides of length a, lies in the first quadrant
of the xy plane, with one corner at the origin. In this region, there is a nonuniform
time-dependent magnetic field B(y, ) = ky*t>Z (where k is a constant). Find the
emf induced in the loop.

Problem 7.14 As a lecture demonstration a short cylindrical bar magnet is dropped
down a vertical aluminum pipe of slightly larger diameter, about 2 meters long. It
takes several seconds to emerge at the bottom, whereas an otherwise identical piece
of unmagnetized iron makes the trip in a fraction of a second. Explain why the
magnet falls more slowly.'?

"For further discussion of the jumping ring (and the related “floating ring”), see C. S. Schneider and
J. P. Ertel, Am. J. Phys. 66, 686 (1998); P. J. H. Tjossem and E. C. Brost, Am. J. Phys. 79, 353 (2011).
12For a discussion of this amazing demonstration see K. D. Hahn et al., Am. J. Phys. 66, 1066 (1998)
and G. Donoso, C. L. Ladera, and P. Martin, Am. J. Phys. 79, 193 (2011).
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7.2.2 H The Induced Electric Field

Faraday’s law generalizes the electrostatic rule V x E = 0 to the time-dependent
régime. The divergence of E is still given by Gauss’s law (V - E = é p)IfEisa
pure Faraday field (due exclusively to a changing B, with p = 0), then

V-E=0, VxE:—E.
ot

This is mathematically identical to magnetostatics,
V-B=0, V xB=pul.

Conclusion: Faraday-induced electric fields are determined by —(dB/d¢) in ex-
actly the same way as magnetostatic fields are determined by poJ. The analog to
Biot-Savart is'? is

E:-if(aB/at)”dr:—ii B x 4
4 22

o | oA a8

and if symmetry permits, we can use all the tricks associated with Ampere’s law
in integral form ( gg B - dl = polene), only now it’s Faraday’s law in integral form:

dd
E-dl=——. 7.19
yg 7 (7.19)

The rate of change of (magnetic) flux through the Amperian loop plays the role
formerly assigned to o lepc.

Example 7.7. A uniform magnetic field B(¢), pointing straight up, fills the
shaded circular region of Fig. 7.25. If B is changing with time, what is the in-
duced electric field?

Solution

E points in the circumferential direction, just like the magnetic field inside a long
straight wire carrying a uniform current density. Draw an Amperian loop of radius
s, and apply Faraday’s law:

dd d dB
E-dl=EQns)=—— = —— (7s°B(1)) = —ms*—.
?g 2ms) T o (JTS ()) TS yr
Therefore
B sdB -
2 dt

If B is increasing, E runs clockwise, as viewed from above.

13Magnetostatics holds only for time-independent currents, but there is no such restriction on dB/d1.
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B > A

E
b a
Rotation
dl
direction T
Amperian loop A
FIGURE 7.25 FIGURE 7.26

Example 7.8. A line charge X is glued onto the rim of a wheel of radius b, which
is then suspended horizontally, as shown in Fig. 7.26, so that it is free to rotate (the
spokes are made of some nonconducting material—wood, maybe). In the central
region, out to radius a, there is a uniform magnetic field By, pointing up. Now
someone turns the field off. What happens?

Solution
The changing magnetic field will induce an electric field, curling around the axis
of the wheel. This electric field exerts a force on the charges at the rim, and the
wheel starts to turn. According to Lenz’s law, it will rotate in such a direction that
its field tends to restore the upward flux. The motion, then, is counterclockwise,
as viewed from above.

Faraday’s law, applied to the loop at radius b, says

do dB 2dB »
%E-dl:Ean):——:—naz—, oo E=-29224
dt dt 2b dt
The torque on a segment of length dl is (r x F), or bAE dl. The total torque on
the wheel is therefore

2dB dB
N=b[-L%2 fdl:—bmaz—,
2b dt dt

and the angular momentum imparted to the wheel is

0
/ Ndt = —ima’b / dB = Awa’bB.
By

It doesn’t matter how quickly or slowly you turn off the field; the resulting angular
velocity of the wheel is the same regardless. (If you find yourself wondering where
the angular momentum came from, you’re getting ahead of the story! Wait for the

next chapter.)
Note that it’s the electric field that did the rotating. To convince you of this,
I deliberately set things up so that the magnetic field is zero at the location of
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the charge. The experimenter may tell you she never put in any electric field—all
she did was switch off the magnetic field. But when she did that, an electric field
automatically appeared, and it’s this electric field that turned the wheel.

I must warn you, now, of a small fraud that tarnishes many applications of
Faraday’s law: Electromagnetic induction, of course, occurs only when the mag-
netic fields are changing, and yet we would like to use the apparatus of mag-
netostatics (Ampere’s law, the Biot-Savart law, and the rest) to calculate those
magnetic fields. Technically, any result derived in this way is only approximately
correct. But in practice the error is usually negligible, unless the field fluctuates
extremely rapidly, or you are interested in points very far from the source. Even
the case of a wire snipped by a pair of scissors (Prob. 7.18) is static enough for
Ampere’s law to apply. This régime, in which magnetostatic rules can be used to
calculate the magnetic field on the right hand side of Faraday’s law, is called
quasistatic. Generally speaking, it is only when we come to electromagnetic
waves and radiation that we must worry seriously about the breakdown of mag-
netostatics itself.

Example 7.9. An infinitely long straight wire carries a slowly varying current
1(t). Determine the induced electric field, as a function of the distance s from the
wire. '

< ) >

N
I
:<— Amperian loop
I

~

FIGURE 7.27

Solution

In the quasistatic approximation, the magnetic field is (ugl /2ms), and it circles
around the wire. Like the B-field of a solenoid, E here runs parallel to the axis.
For the rectangular “Amperian loop” in Fig. 7.27, Faraday’s law gives:

d
ng-dl = E(s0)l — E(s)l = —E/B-da

,(L()l dl 1 , [,Lol dl
= ——— | —ds = ———(ns —Insy).
2w dt Jy, s 2 dt

14This example is artificial, and not just in the obvious sense of involving infinite wires, but in a more
subtle respect. It assumes that the current is the same (at any given instant) all the way down the
line. This is a safe assumption for the short wires in typical electric circuits, but not for long wires
(transmission lines), unless you supply a distributed and synchronized driving mechanism. But never
mind—the problem doesn’t inquire how you would produce such a current; it only asks what fields
would result if you did. Variations on this problem are discussed by M. A. Heald, Am. J. Phys. 54,
1142 (1986).
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Thus

Mo dl A
E(s)=|——1 K|z, 7.20
(s) [zﬂ - Ins + ]z (7.20)

where K is a constant (that is to say, it is independent of s—it might still be a
function of ¢). The actual value of K depends on the whole history of the function
I (t)—we’ll see some examples in Chapter 10.

Equation 7.20 has the peculiar implication that E blows up as s goes to infin-
ity. That can’t be true ... What’s gone wrong? Answer: We have overstepped the
limits of the quasistatic approximation. As we shall see in Chapter 9, electromag-
netic “news” travels at the speed of light, and at large distances B depends not
on the current now, but on the current as it was at some earlier time (indeed, a
whole range of earlier times, since different points on the wire are different dis-
tances away). If t is the time it takes / to change substantially, then the quasistatic
approximation should hold only for

s L ct, (7.21)

and hence Eq. 7.20 simply does not apply, at extremely large s.

Problem 7.15 A long solenoid with radius a and n turns per unit length carries a
time-dependent current /(¢) in the ¢ direction. Find the electric field (magnitude
and direction) at a distance s from the axis (both inside and outside the solenoid),
in the quasistatic approximation.

Problem 7.16 An alternating current I = Iy cos (wt) flows down a long straight
wire, and returns along a coaxial conducting tube of radius a.

(a) In what direction does the induced electric field point (radial, circumferential,
or longitudinal)?

(b) Assuming that the field goes to zero as s — oo, find E(s, £).1

Problem 7.17 A long solenoid of radius a, carrying n turns per unit length, is looped
by a wire with resistance R, as shown in Fig. 7.28.

FIGURE 7.28

5This is not at all the way electric fields actually behave in coaxial cables, for reasons suggested in
the previous footnote. See Sect. 9.5.3, or J. G. Cherveniak, Am. J. Phys., 54, 946 (1986), for a more
realistic treatment.
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(a) If the current in the solenoid is increasing at a constant rate (d//dt = k), what
current flows in the loop, and which way (left or right) does it pass through the
resistor?

(b) If the current / in the solenoid is constant but the solenoid is pulled out of the
loop (toward the left, to a place far from the loop), what total charge passes
through the resistor?

Problem 7.18 A square loop, side a, resistance R, lies a distance s from an infinite
straight wire that carries current / (Fig. 7.29). Now someone cuts the wire, so
drops to zero. In what direction does the induced current in the square loop flow,
and what total charge passes a given point in the loop during the time this current
flows? If you don’t like the scissors model, turn the current down gradually:

) —anl, forO0 <t <1/a,
I = ! 0, fort > 1/a.
a
]a
y
s
. ¥ \ / .
1
Q
@
FIGURE 7.29

Problem 7.19 A toroidal coil has a rectangular cross section, with inner radius a,
outer radius a + w, and height A. It carries a total of N tightly wound turns, and
the current is increasing at a constant rate (d//dt = k). If w and & are both much
less than a, find the electric field at a point z above the center of the toroid. [Hint:
Exploit the analogy between Faraday fields and magnetostatic fields, and refer to
Ex.5.6.]

Problem 7.20 Where is dB/dr nonzero, in Figure 7.21(b)? Exploit the analogy
between Faraday’s law and Ampere’s law to sketch (qualitatively) the electric field.

Problem 7.21 Imagine a uniform magnetic field, pointing in the z direction and
filling all space (B = By Z). A positive charge is at rest, at the origin. Now somebody
turns off the magnetic field, thereby inducing an electric field. In what direction does
the charge move?'®

7.2.3 B Inductance

Suppose you have two loops of wire, at rest (Fig. 7.30). If you run a steady current
I, around loop 1, it produces a magnetic field B;. Some of the field lines pass

16This paradox was suggested by Tom Colbert. Refer to Problem 2.55.
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B,
_—Loop2 dl,
Loop 2
2
—Loop 1 Loop 1
1 1\ dl,
FIGURE 7.30 FIGURE 7.31

through loop 2; let ®, be the flux of B; through 2. You might have a tough time
actually calculating B, but a glance at the Biot-Savart law,

dl ¥
Bl=&115£ Lx ,

4 22

reveals one significant fact about this field: I is proportional to the current I,.
Therefore, so too is the flux through loop 2:

o, = fBl -daz.
Thus
&y = Mo 14, (7.22)

where M>, is the constant of proportionality; it is known as the mutual induc-
tance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by
expressing the flux in terms of the vector potential, and invoking Stokes’ theorem:

sz/Bl-dazzf(VXA[)-dazzﬁAl-dlz.

Now, according to Eq. 5.66,

1 dl
A = Kot -1
4 2
and hence
1 dl
@, = K01 (y{ —1> - dl,.
4 2
Evidently

dl, - dl
My = 20 yf f e (7.23)
4 2
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This is the Neumann formula; it involves a double line integral—one integration
around loop 1, the other around loop 2 (Fig. 7.31). It’s not very useful for practical
calculations, but it does reveal two important things about mutual inductance:

1. My, is a purely geometrical quantity, having to do with the sizes, shapes,
and relative positions of the two loops.

2. The integral in Eq. 7.23 is unchanged if we switch the roles of loops 1 and
2; it follows that

My, = M. (7.24)

This is an astonishing conclusion: Whatever the shapes and positions of the
loops, the flux through 2 when we run a current I around 1 is identical to
the flux through 1 when we send the same current I around 2. We may as
well drop the subscripts and call them both M.

Example 7.10. A short solenoid (length / and radius a, with n; turns per unit
length) lies on the axis of a very long solenoid (radius b, n, turns per unit length)
as shown in Fig. 7.32. Current I flows in the short solenoid. What is the flux

through the long solenoid?
)))))

FIGURE 7.32

Solution

Since the inner solenoid is short, it has a very complicated field; moreover, it puts
a different flux through each turn of the outer solenoid. It would be a miserable
task to compute the total flux this way. However, if we exploit the equality of the
mutual inductances, the problem becomes very easy. Just look at the reverse situ-
ation: run the current / through the outer solenoid, and calculate the flux through
the inner one. The field inside the long solenoid is constant:

B = uonyI
(Eq. 5.59), so the flux through a single loop of the short solenoid is
Bra® = ,uonzlrra2.
There are n;/ turns in all, so the total flux through the inner solenoid is

o = ,uorraznlnzll.
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This is also the flux a current / in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

2

M = pomaninol.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

d®, dI,
& =—"2__py=-L 7.25
2 dt dt (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

®=LI (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M, it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

dl
=—-L—. 7.27
¢ dt (7.:27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.

FIGURE 7.33
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Example 7.11. Find the self-inductance of a toroidal coil with rectangular cross
section (inner radius a, outer radius b, height /), that carries a total of N turns.

Solution
The magnetic field inside the toroid is (Eq. 5.60)
NI
B="1""
2ms
a |-
2 - h
b >
ds
Axis
FIGURE 7.34

The flux through a single turn (Fig. 7.34) is

NI ("1 NIh b
/B-da:MO h/ Sas=H (2.
2 a S 2 a

The total flux is N times this, so the self-inductance (Eq. 7.26) is

N2h b
L =H (-) . (7.28)
27 a

Inductance (like capacitance) is an intrinsically positive quantity. Lenz’s law,
which is enforced by the minus sign in Eq. 7.27, dictates that the emf is in such
a direction as to oppose any change in current. For this reason, it is called a
back emf. Whenever you try to alter the current in a wire, you must fight against
this back emf. Inductance plays somewhat the same role in electric circuits that
mass plays in mechanical systems: The greater L is, the harder it is to change
the current, just as the larger the mass, the harder it is to change an object’s
velocity.

Example 7.12. Suppose a current / is flowing around a loop, when someone
suddenly cuts the wire. The current drops “instantaneously” to zero. This gen-
erates a whopping back emf, for although 7 may be small, d1/dt is enormous.
(That’s why you sometimes draw a spark when you unplug an iron or toaster—
electromagnetic induction is desperately trying to keep the current going, even if
it has to jump the gap in the circuit.)

Nothing so dramatic occurs when you plug in a toaster or iron. In this case in-
duction opposes the sudden increase in current, prescribing instead a smooth and
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continuous buildup. Suppose, for instance, that a battery (which supplies a con-

stant emf &) is connected to a circuit of resistance R and inductance L (Fig. 7.35).
What current flows?

S

80.|.

FIGURE 7.35

Solution
The total emf in this circuit is & from the battery plus —L(d/dt) from the in-
ductance. Ohm’s law, then, says!’
& —L— =IR.
O "

This is a first-order differential equation for I as a function of time. The general
solution, as you can show for yourself, is

&
I(1) = EO + ke R/DY,

where k is a constant to be determined by the initial conditions. In particular, if
you close the switch at time 7 = 0, so 1(0) = 0, then k = —&y/ R, and

1(t) = % [1—e RPN, (7.29)

This function is plotted in Fig. 7.36. Had there been no inductance in the circuit,
the current would have jumped immediately to &/R. In practice, every circuit
has some self-inductance, and the current approaches &£ /R asymptotically. The
quantity T = L/R is the time constant; it tells you how long the current takes to
reach a substantial fraction (roughly two-thirds) of its final value.

EJR

L/R 2L/R 3L/IR !

FIGURE 7.36

17Notice that —L(d1/dt) goes on the left side of the equation—it is part of the emf that establishes
the voltage across the resistor.



7.2 Electromagnetic Induction 327

Problem 7.22 A small loop of wire (radius «a) is held a distance z above the center
of a large loop (radius b), as shown in Fig. 7.37. The planes of the two loops are
parallel, and perpendicular to the common axis.

(a) Suppose current / flows in the big loop. Find the flux through the little loop.
(The little loop is so small that you may consider the field of the big loop to be
essentially constant.)

(b) Suppose current / flows in the little loop. Find the flux through the big loop.
(The little loop is so small that you may treat it as a magnetic dipole.)

(¢) Find the mutual inductances, and confirm that M, = M,,.

Problem 7.23 A square loop of wire, of side a, lies midway between two long wires,
3a apart, and in the same plane. (Actually, the long wires are sides of a large rectan-
gular loop, but the short ends are so far away that they can be neglected.) A clock-
wise current / in the square loop is gradually increasing: d1/dt = k (a constant).
Find the emf induced in the big loop. Which way will the induced current flow?

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius
R, carrying n turns per unit length.

: .. 4
- !

FIGURE 7.37 FIGURE 7.38

Problem 7.25 Try to compute the self-inductance of the “hairpin” loop shown in
Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from
the long straight section.) You’ll run into a snag that is characteristic of many self-
inductance calculations. To get a definite answer, assume the wire has a tiny radius ¢,
and ignore any flux through the wire itself.

Problem 7.26 An alternating current / (1) = I cos(wt) (amplitude 0.5 A, frequency
60 Hz) flows down a straight wire, which runs along the axis of a toroidal coil with
rectangular cross section (inner radius 1 cm, outer radius 2 cm, height 1 cm, 1000
turns). The coil is connected to a 500 €2 resistor.

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the
current, I (¢), in the resistor.

(b) Calculate the back emf in the coil, due to the current I (¢). What is the ratio of
the amplitudes of this back emf and the “direct” emf in (a)?

Problem 7.27 A capacitor C is charged up to a voltage V and connected to an
inductor L, as shown schematically in Fig. 7.39. At time ¢t = 0, the switch § is
closed. Find the current in the circuit as a function of time. How does your answer
change if a resistor R is included in series with C and L?
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FIGURE 7.39

7.2.4 M Energy in Magnetic Fields

It takes a certain amount of energy to start a current flowing in a circuit. I’'m not
talking about the energy delivered to the resistors and converted into heat—that
is irretrievably lost, as far as the circuit is concerned, and can be large or small,
depending on how long you let the current run. What I am concerned with, rather,
is the work you must do against the back emf to get the current going. This is
a fixed amount, and it is recoverable: you get it back when the current is turned
off. In the meantime, it represents energy latent in the circuit; as we’ll see in a
moment, it can be regarded as energy stored in the magnetic field.

The work done on a unit charge, against the back emf, in one trip around the
circuit is —& (the minus sign records the fact that this is the work done by you
against the emf, not the work done by the emf). The amount of charge per unit
time passing down the wire is /. So the total work done per unit time is

aw dl

— =-¢I=LI—.

dt dt
If we start with zero current and build it up to a final value 7, the work done
(integrating the last equation over time) is

1
W= ELIZ. (7.30)

It does not depend on how long we take to crank up the current, only on the
geometry of the loop (in the form of L) and the final current /.

There is a nicer way to write W, which has the advantage that it is readily
generalized to surface and volume currents. Remember that the flux ® through
the loop is equal to L1 (Eq. 7.26). On the other hand,

cb:fB-dazf(VxA)-da:jéA-dl,

where the line integral is around the perimeter of the loop. Thus

LI=v¢A-dl,
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and therefore
1 1
W=§I¢A-dl=§j£(A~I)dl. (7.31)
In this form, the generalization to volume currents is obvious:

W = l‘/(A-J)d‘f. (7.32)
2 )y

But we can do even better, and express W entirely in terms of the magnetic
field: Ampere’s law, V x B = uoJ, lets us eliminate J:

1
W=—[A-(VxB)dr. (7.33)
210
Integration by parts transfers the derivative from B to A; specifically, product rule
6 states that

V. AxB) =B-(VxA) —A-(VxB),
SO
A-(VxB)=B-B—V.(A xB).

W:iUBzdz—fv-(AxB)dr]
210

:LU B2d1—7§(AxB)-da], (7.34)
2o LJy s

where S is the surface bounding the volume V.

Now, the integration in Eq. 7.32 is to be taken over the entire volume occupied
by the current. But any region larger than this will do just as well, for J is zero
out there anyway. In Eq. 7.34, the larger the region we pick the greater is the
contribution from the volume integral, and therefore the smaller is that of the
surface integral (this makes sense: as the surface gets farther from the current,
both A and B decrease). In particular, if we agree to integrate over all space, then
the surface integral goes to zero, and we are left with

Consequently,

1

=— B*dr. (7.35)
2“0 all space

w

In view of this result, we say the energy is “stored in the magnetic field,” in
the amount (B?/21() per unit volume. This is a nice way to think of it, though
someone looking at Eq. 7.32 might prefer to say that the energy is stored in the
current distribution, in the amount %(A -J) per unit volume. The distinction is
one of bookkeeping; the important quantity is the total energy W, and we need
not worry about where (if anywhere) the energy is “located.”
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You might find it strange that it takes energy to set up a magnetic field—after
all, magnetic fields themselves do no work. The point is that producing a magnetic
field, where previously there was none, requires changing the field, and a chang-
ing B-field, according to Faraday, induces an electric field. The latter, of course,
can do work. In the beginning, there is no E, and at the end there is no E; but in
between, while B is building up, there is an E, and it is against this that the work
is done. (You see why I could not calculate the energy stored in a magnetostatic
field back in Chapter 5.) In the light of this, it is extraordinary how similar the
magnetic energy formulas are to their electrostatic counterparts:'3

1
Welee = 3 /(V,O) dt = %O/Ez dr, (2.43 and 2.45)
1 o,
Wiae == [ (A-J)dt = — [ B dr. (7.32 and 7.35)
2 210

Example 7.13. A long coaxial cable carries current / (the current flows down the
surface of the inner cylinder, radius a, and back along the outer cylinder, radius
b) as shown in Fig. 7.40. Find the magnetic energy stored in a section of length /.

i «— |
b
a 1 —»

FIGURE 7.40

Solution
According to Ampere’s law, the field between the cylinders is

ol »
B=—¢.
2ns¢

Elsewhere, the field is zero. Thus, the energy per unit volume is
1 (ol _ pol?
2up \2ms ) 8m2s2’
The energy in a cylindrical shell of length /, radius s, and thickness ds, then, is

wol? wol?l (ds
— )2 = — .
(8n2s2) mls ds 4 s

"8For an illuminating confirmation of Eq. 7.35, using the method of Prob. 2.44, see T. H. Boyer,
Am. J. Phys. 69,1 (2001).
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Integrating from a to b, we have:

I’ (b
w="2""1n (-) .
4 a
By the way, this suggests a very simple way to calculate the self-inductance of
the cable. According to Eq. 7.30, the energy can also be written as %LI 2. Com-

paring the two expressions,'’
[ b
L= Kot In (—) .
2 a

This method of calculating self-inductance is especially useful when the current
is not confined to a single path, but spreads over some surface or volume, so that
different parts of the current enclose different amounts of flux. In such cases, it
can be very tricky to get the inductance directly from Eq. 7.26, and it is best to let
Eq. 7.30 define L.

Problem 7.28 Find the energy stored in a section of length / of a long solenoid
(radius R, current /, n turns per unit length), (a) using Eq. 7.30 (you found L in
Prob. 7.24); (b) using Eq. 7.31 (we worked out A in Ex. 5.12); (c) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < R out
to radius b > R).

Problem 7.29 Calculate the energy stored in the toroidal coil of Ex. 7.11, by apply-
ing Eq. 7.35. Use the answer to check Eq. 7.28.

Problem 7.30 A long cable carries current in one direction uniformly distributed
over its (circular) cross section. The current returns along the surface (there is a
very thin insulating sheath separating the currents). Find the self-inductance per
unit length.

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long time
when suddenly, at time r = 0, switch S is thrown from A to B, bypassing the battery.

Aoy S
B
80 - L
R
FIGURE 7.41

9Notice the similarity to Eq. 7.28—in a sense, the rectangular toroid is a short coaxial cable, turned
on its side.
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(a) What is the current at any subsequent time #?
(b) What is the total energy delivered to the resistor?

(c) Show that this is equal to the energy originally stored in the inductor.

Problem 7.32 Two tiny wire loops, with areas a, and a,, are situated a displacement
2 apart (Fig. 7.42).

a,

FIGURE 7.42

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use
Eq. 5.88.] Is your formula consistent with Eq. 7.247

(b) Suppose a current /; is flowing in loop 1, and we propose to turn on a current
I> in loop 2. How much work must be done, against the mutually induced emf,
to keep the current /; flowing in loop 1? In light of this result, comment on
Eq. 6.35.

Problem 7.33 An infinite cylinder of radius R carries a uniform surface charge o.
We propose to set it spinning about its axis, at a final angular velocity w ;. How much
work will this take, per unit length? Do it two ways, and compare your answers:

(a) Find the magnetic field and the induced electric field (in the quasistatic approx-
imation), inside and outside the cylinder, in terms of w, @, and s (the distance
from the axis). Calculate the torque you must exert, and from that obtain the
work done per unit length (W = [ N d¢).

(b) Use Eq. 7.35 to determine the energy stored in the resulting magnetic field.

7.3 B MAXWELL'S EQUATIONS

7.3.1 H Electrodynamics Before Maxwell

So far, we have encountered the following laws, specifying the divergence and
curl of electric and magnetic fields:

1
i V-E =—p (Gauss’s law),
€0
i) V-B =0 (no name),
oB
(i) VxE= 3 (Faraday’s law),

Giv) V xB=puo (Ampere’s law).
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These equations represent the state of electromagnetic theory in the mid-nineteenth
century, when Maxwell began his work. They were not written in so compact a
form, in those days, but their physical content was familiar. Now, it happens that
there is a fatal inconsistency in these formulas. It has to do with the old rule that
divergence of curl is always zero. If you apply the divergence to number (iii),
everything works out:

B

3
V-(VxE):V-(—§)=—E(V-B).

The left side is zero because divergence of curl is zero; the right side is zero by
virtue of equation (ii). But when you do the same thing to number (iv), you get
into trouble:

V- (V xB) = puo(V-J); (7.36)

the left side must be zero, but the right side, in general, is not. For steady currents,
the divergence of J is zero, but when we go beyond magnetostatics Ampere’s law
cannot be right.

There’s another way to see that Ampere’s law is bound to fail for nonsteady
currents. Suppose we’re in the process of charging up a capacitor (Fig. 7.43). In
integral form, Ampere’s law reads

fB ~dl = polenc.

I want to apply it to the Amperian loop shown in the diagram. How do I deter-
mine /.7 Well, it’s the total current passing through the loop, or, more precisely,
the current piercing a surface that has the loop for its boundary. In this case, the
simplest surface lies in the plane of the loop—the wire punctures this surface, so
Iene = 1. Fine—but what if [ draw instead the balloon-shaped surface in Fig. 7.43?
No current passes through this surface, and I conclude that I, = 0! We never
had this problem in magnetostatics because the conflict arises only when charge

Amperian loop

e

= - -—-

A e, )
- w
Capacitor

FIGURE 7.43
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is piling up somewhere (in this case, on the capacitor plates). But for nonsteady
currents (such as this one) “the current enclosed by the loop” is an ill-defined
notion; it depends entirely on what surface you use. (If this seems pedantic to
you—*‘obviously one should use the plane surface”—remember that the Ampe-
rian loop could be some contorted shape that doesn’t even lie in a plane.)

Of course, we had no right to expect Ampere’s law to hold outside of magne-
tostatics; after all, we derived it from the Biot-Savart law. However, in Maxwell’s
time there was no experimental reason to doubt that Ampere’s law was of wider
validity. The flaw was a purely theoretical one, and Maxwell fixed it by purely
theoretical arguments.

7.3.2 @ How Maxwell Fixed Ampére’s Law

The problem is on the right side of Eq. 7.36, which should be zero, but isn’t.
Applying the continuity equation (5.29) and Gauss’s law, the offending term can
be rewritten:

v.y="_ 9 v.E=—v (%

J=——=——(V -E)==-V.le— ).
or ot " o1

If we were to combine €)(dE/dt) with J, in Ampere’s law, it would be just right
to kill off the extra divergence:

oE
VxB=puJ+ MUEOE. (7.37)

(Maxwell himself had other reasons for wanting to add this quantity to Ampere’s
law. To him, the rescue of the continuity equation was a happy dividend rather than
a primary motive. But today we recognize this argument as a far more compelling
one than Maxwell’s, which was based on a now-discredited model of the ether.)®’

Such a modification changes nothing, as far as magnetosratics is concerned:
when E is constant, we still have V x B = oJ. In fact, Maxwell’s term is hard
to detect in ordinary electromagnetic experiments, where it must compete for at-
tention with J—that’s why Faraday and the others never discovered it in the lab-
oratory. However, it plays a crucial role in the propagation of electromagnetic
waves, as we’ll see in Chapter 9.

Apart from curing the defect in Ampere’s law, Maxwell’s term has a cer-
tain aesthetic appeal: Just as a changing magnetic field induces an electric field
(Faraday’s law), so*!

A changing electric field induces a magnetic field.

20For the history of this subject, see A. M. Bork, Am. J. Phys. 31, 854 (1963).

2I'See footnote 8 (page 313) for commentary on the word “induce.” The same issue arises here: Should
a changing electric field be regarded as an independent source of magnetic field (along with current)?
In a proximate sense it does function as a source, but since the electric field itself was produced by
charges and currents, they alone are the “ultimate” sources of E and B. See S. E. Hill, Phys. Teach.
49, 343 (2011); for a contrary view, see C. Savage, Phys. Teach. 50, 226 (2012).
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Of course, theoretical convenience and aesthetic consistency are only suggestive—
there might, after all, be other ways to doctor up Ampere’s law. The real confir-
mation of Maxwell’s theory came in 1888 with Hertz’s experiments on electro-
magnetic waves.

Maxwell called his extra term the displacement current:

J ok (7.38)
=¢p—. .
d 07,

(It’s a misleading name; €;(dE/d¢) has nothing to do with current, except that it
adds to J in Ampere’s law.) Let’s see now how displacement current resolves the
paradox of the charging capacitor (Fig. 7.43). If the capacitor plates are very close
together (I didn’t draw them that way, but the calculation is simpler if you assume
this), then the electric field between them is

1 10

E:—U:——,
€0 EoA

where Q is the charge on the plate and A is its area. Thus, between the plates

0E 1 dQ 1

9 A di A

Now, Eq. 7.37 reads, in integral form,

oE
%B dl = MOIenc + MOEO[ <E) -da. (739)

If we choose the flat surface, then £ = 0 and I, = I. If, on the other hand, we
use the balloon-shaped surface, then /., = 0, but f (0E/0t) - da = I /¢y. So we
get the same answer for either surface, though in the first case it comes from the
conduction current, and in the second from the displacement current.

Example 7.14. Imagine two concentric metal spherical shells (Fig. 7.44).

The inner one (radius a) carries a charge Q(¢), and the outer one (radius ») an
opposite charge —Q(¢). The space between them is filled with Ohmic material of
conductivity o, so a radial current flows:

J=oE=o— 2% I:—Q:/J-da:i—Q.
0

drregr?

This configuration is spherically symmetrical, so the magnetic field has to be zero
(the only direction it could possibly point is radial, and V-B =0 = § B-da =
B(4mr?) =0, s0 B = 0). What? 1 thought currents produce magnetic fields! Isn’t
that what Biot-Savart and Ampere taught us? How can there be a J with no
accompanying B?
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FIGURE 7.44

Solution
This is not a static configuration: Q, E, and J are all functions of time; Ampere
and Biot-Savart do not apply. The displacement current

PRI 0 ;
=€ — = — — = —0
d 9t T 4 2 4 egr?

exactly cancels the conduction current (in Eq. 7.37), and the magnetic field
(determined by V - B =0, V x B = 0) is indeed zero.

Problem 7.34 A fat wire, radius a, carries a constant current /, uniformly dis-
tributed over its cross section. A narrow gap in the wire, of width w < a, forms
a parallel-plate capacitor, as shown in Fig. 7.45. Find the magnetic field in the gap,
at a distance s < a from the axis.

w
——
a T +0 —O
[ — [ [—>
FIGURE 7.45

Problem 7.35 The preceding problem was an artificial model for the charging ca-
pacitor, designed to avoid complications associated with the current spreading out
over the surface of the plates. For a more realistic model, imagine thin wires that
connect to the centers of the plates (Fig. 7.46a). Again, the current / is constant,
the radius of the capacitor is a, and the separation of the plates is w < a. Assume
that the current flows out over the plates in such a way that the surface charge is
uniform, at any given time, and is zero at ¢ = 0.

(a) Find the electric field between the plates, as a function of ¢.

(b) Find the displacement current through a circle of radius s in the plane mid-
way between the plates. Using this circle as your “Amperian loop,” and the flat
surface that spans it, find the magnetic field at a distance s from the axis.
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(c) Repeat part (b), but this time use the cylindrical surface in Fig. 7.46(b), which
is open at the right end and extends to the left through the plate and terminates
outside the capacitor. Notice that the displacement current through this surface
is zero, and there are two contributions to Iep..”>

Problem 7.36 Refer to Prob. 7.16, to which the correct answer was

E(s, 1) =

wolow

sin(wt) In (%) z.

(a) Find the displacement current density J,.

(b) Integrate it to get the total displacement current,

IdZ/Jd‘da.

(c) Compare I; and /. (What’s their ratio?) If the outer cylinder were, say, 2 mm in
diameter, how high would the frequency have to be, for /; to be 1% of 1? [This
problem is designed to indicate why Faraday never discovered displacement
currents, and why it is ordinarily safe to ignore them unless the frequency is
extremely high.]

7.3.3 B Maxwell’s Equations

In the last section we put the finishing touches on Maxwell’s equations:

(i)
(i)
(iii)

(iv)

V-E

V.-B

1
=—p
€

=0
B

VXE=——

ot

oE
VxB= MOJ‘FMOEOE

(Gauss’s law),
(no name),

(Faraday’s law),

(Ampere’s law with

Maxwell’s correction).

(7.40)

22This problem raises an interesting quasi-philosophical question: If you measure B in the laboratory,
have you detected the effects of displacement current (as (b) would suggest), or merely confirmed the

effects of ordinary currents (as (c) implies)? See D. F. Bartlett, Am. J. Phys. 58, 1168 (1990).
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Together with the force law,
F=¢gE+vxB), (7.41)

they summarize the entire theoretical content of classical electrodynamics®® (save
for some special properties of matter, which we encountered in Chapters 4 and 6).
Even the continuity equation,

ap
V.-J= or” (7.42)
which is the mathematical expression of conservation of charge, can be derived
from Maxwell’s equations by applying the divergence to number (iv).

I have written Maxwell’s equations in the traditional way, which emphasizes
that they specify the divergence and curl of E and B. In this form, they reinforce
the notion that electric fields can be produced either by charges (p) or by changing
magnetic fields (0B/d¢), and magnetic fields can be produced either by currents
(J) or by changing electric fields (0E/dt). Actually, this is misleading, because
0B/0t and 0E/dt are themselves due to charges and currents. I think it is logically
preferable to write

. 1 oB
i) V.-E=—p, (i) VxE+ — =0,
) ot
(7.43)
.. . oE
(i) V.-B=0, @iv) V XB—[,L()GOE = uoJ,

with the fields (E and B) on the left and the sources (p and J) on the right. This
notation emphasizes that all electromagnetic fields are ultimately attributable to
charges and currents. Maxwell’s equations tell you how charges produce fields;
reciprocally, the force law tells you how fields atfect charges.

Problem 7.37 Suppose

1 n

Er, 1) = — Lo —r)i; Br,1)=0
4 eq r?

(The theta function is defined in Prob. 1.46b). Show that these fields satisfy all of

Maxwell’s equations, and determine p and J. Describe the physical situation that

gives rise to these fields.

7.3.4 B Magnetic Charge

There is a pleasing symmetry to Maxwell’s equations; it is particularly striking in
free space, where p and J vanish:

B
V-E=0, VXE=——,
at

JE

V-B=0, VXBZMQEQE.

ZLike any differential equations, Maxwell’s must be supplemented by suitable boundary conditions.
Because these are typically “obvious” from the context (e.g. E and B go to zero at large distances from
a localized charge distribution), it is easy to forget that they play an essential role.
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If you replace E by B and B by —0€oE, the first pair of equations turns into the
second, and vice versa. This symmetry?* between E and B is spoiled, though, by
the charge term in Gauss’s law and the current term in Ampere’s law. You can’t
help wondering why the corresponding quantities are “missing” from V - B =0
and V x E = —9B/0dt. What if we had

. 1 0B
) V-E=—p., (i) V xE = —poJm — —,
€0 ot
5 (7.44)
(i) VB = popm, (iv) V xB = uolJ. + Ho€o -

Then p,, would represent the density of magnetic “charge,” and p, the density of
electric charge; J,, would be the current of magnetic charge, and J, the current of
electric charge. Both charges would be conserved:

V.oJ, = —aait’”, and V-J, = —aa‘f.
The former follows by application of the divergence to (iii), the latter by taking
the divergence of (iv).

In a sense, Maxwell’s equations beg for magnetic charge to exist—it would fit
in so nicely. And yet, in spite of a diligent search, no one has ever found any.?
As far as we know, p,, is zero everywhere, and so is J,,;; B is not on equal foot-
ing with E: there exist stationary sources for E (electric charges) but none for B.
(This is reflected in the fact that magnetic multipole expansions have no monopole
term, and magnetic dipoles consist of current loops, not separated north and south
“poles.”) Apparently God just didn’t make any magnetic charge. (In quantum elec-
trodynamics, by the way, it’s a more than merely aesthetic shame that magnetic
charge does not seem to exist: Dirac showed that the existence of magnetic charge
would explain why electric charge is quantized. See Prob. 8.19.)

(7.45)

Problem 7.38 Assuming that “Coulomb’s law” for magnetic charges (g,,) reads

F= o dudn g, (7.46)

work out the force law for a monopole g, moving with velocity v through electric
and magnetic fields E and B.?°

Problem 7.39 Suppose a magnetic monopole ¢,, passes through a resistanceless
loop of wire with self-inductance L. What current is induced in the loop??’

ZDon’t be distracted by the pesky constants o and €; these are present only because the SI system
measures E and B in different units, and would not occur, for instance, in the Gaussian system.

Z5For an extensive bibliography, see A. S. Goldhaber and W. P. Trower, Am. J. Phys. 58, 429 (1990).
26For interesting commentary, see W. Rindler, Am. J. Phys. 57, 993 (1989).

?TThis is one of the methods used to search for monopoles in the laboratory; see B. Cabrera, Phys.
Rev. Lett. 48, 1378 (1982).
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7.3.5 B Maxwell’s Equations in Matter

Maxwell’s equations in the form 7.40 are complete and correct as they stand.
However, when you are working with materials that are subject to electric and
magnetic polarization there is a more convenient way to write them. For inside
polarized matter there will be accumulations of “bound” charge and current, over
which you exert no direct control. It would be nice to reformulate Maxwell’s
equations so as to make explicit reference only to the “free” charges and currents.

We have already learned, from the static case, that an electric polarization P
produces a bound charge density

op=—V P (7.47)

(Eq. 4.12). Likewise, a magnetic polarization (or “magnetization”) M results in a
bound current

Jy =V xM (7.48)

(Eq. 6.13). There’s just one new feature to consider in the nonstatic case: Any
change in the electric polarization involves a flow of (bound) charge (call it J ),
which must be included in the total current. For suppose we examine a tiny chunk
of polarized material (Fig. 7.47). The polarization introduces a charge density
op = P at one end and —oy, at the other (Eq. 4.11). If P now increases a bit, the
charge on each end increases accordingly, giving a net current

d0, b P

dl = —da, = —da,.
dat aL ot aL

The current density, therefore, is

opP
T

This polarization current has nothing to do with the bound current J,. The
latter is associated with magnetization of the material and involves the spin and
orbital motion of electrons; J,, by contrast, is the result of the linear motion of
charge when the electric polarization changes. If P points to the right, and is
increasing, then each plus charge moves a bit to the right and each minus charge
to the left; the cumulative effect is the polarization current J,. We ought to check
that Eq. 7.49 is consistent with the continuity equation:

J, (7.49)

P B don
v.]=v.2 =2wv.p=_22
Iy ot Bt( ) ot
da; ’
+G,

FIGURE 7.47
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Yes: The continuity equation is satisfied; in fact, J, is essential to ensure the

conservation of bound charge. (Incidentally, a changing magnetization does not

lead to any analogous accumulation of charge or current. The bound current

J» = V x M varies in response to changes in M, to be sure, but that’s about it.)
In view of all this, the total charge density can be separated into two parts:

p=pr+pp,=pr—V-P, (7.50)
and the current density into three parts:

oP

J=Jf+Jb—|-Jp=Jf+V><M—|—§. (7.51)
Gauss’s law can now be written as
1
V.-E=—(p;—V-P),
€0
or
V-D=py, (7.52)
where, as in the static case,
D = ¢E + P. (7.53)

Meanwhile, Ampere’s law (with Maxwell’s term) becomes

opP oE
VxB=uo|Js+V XM+ — )+ noco—,

at dt
or
oD
\% XH=Jf+¥» (7.54)
where, as before,
1
H= —B-M. (7.55)
Mo

Faraday’s law and V - B = 0 are not affected by our separation of charge and
current into free and bound parts, since they do not involve p or J.
In terms of free charges and currents, then, Maxwell’s equations read

B
i) V-D=py, (i) VxE=—2",
D (7.56)
(i) V-B =0, (V) VxH=J;+ ="

Some people regard these as the “true” Maxwell’s equations, but please under-
stand that they are in no way more “general” than Eq. 7.40; they simply reflect a
convenient division of charge and current into free and nonfree parts. And they
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have the disadvantage of hybrid notation, since they contain both E and D, both
B and H. They must be supplemented, therefore, by appropriate constitutive
relations, giving D and H in terms of E and B. These depend on the nature of
the material; for linear media

P=¢yx.E, and M = x,H, (7.57)
SO
1
D=¢E, and H= —B, (7.58)
n

where € = €p(1 + x.) and w = uo(l + x»). Incidentally, you’ll remember that
D is called the electric “displacement”; that’s why the second term in the
Ampere/Maxwell equation (iv) came to be called the displacement current.
In this context,

Jo=—. (7.59)

Problem 7.40 Sea water at frequency v = 4 x 10® Hz has permittivity € = 81¢,
permeability ;= 1o, and resistivity p = 0.23 Q - m. What is the ratio of conduc-
tion current to displacement current? [Hint: Consider a parallel-plate capacitor im-
mersed in sea water and driven by a voltage Vj cos (2mvt).]

7.3.6 @ Boundary Conditions

In general, the fields E, B, D, and H will be discontinuous at a boundary between
two different media, or at a surface that carries a charge density o or a current den-
sity K. The explicit form of these discontinuities can be deduced from Maxwell’s
equations (7.56), in their integral form

(1) fD-da: Ot
S

over any closed surface S.

(i1) fB-da:O
S

d
(iii) .(,l{ E-dl= T / B-da for any surface S
I s bounded by the

d
(iv) jﬁ H-dl=1; + _/ D - da closed loop P.
P dt S

Applying (i) to a tiny, wafer-thin Gaussian pillbox extending just slightly into
the material on either side of the boundary (Fig. 7.48), we obtain:

Dl-a—Dz-a:afa.

(The positive direction for a is from 2 toward 1. The edge of the wafer con-
tributes nothing in the limit as the thickness goes to zero; nor does any volume
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FIGURE 7.48

charge density.) Thus, the component of D that is perpendicular to the interface is
discontinuous in the amount

Di — Dy =oy. (7.60)

Identical reasoning, applied to equation (ii), yields

Bi- — B =0. (7.61)

Turning to (iii), a very thin Amperian loop straddling the surface gives
d
E1 -l—E2-1=——fB-da.
dt Js
But in the limit as the width of the loop goes to zero, the flux vanishes. (I have

already dropped the contribution of the two ends to § E - d1, on the same grounds.)
Therefore,

El —El =o0. (7.62)

That is, the components of E parallel to the interface are continuous across the
boundary. By the same token, (iv) implies

H - 1-H, 1=1;_,

where I, is the free current passing through the Amperian loop. No volume
current density will contribute (in the limit of infinitesimal width), but a surface
current can. In fact, if i is a unit vector perpendicular to the interface (pointing
from 2 toward 1), so that (i x 1) is normal to the Amperian loop (Fig. 7.49), then

Ifem:Kf(ﬁXl):(KfXﬁ)l,
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FIGURE 7.49

and hence

H - H) =K, x i (7.63)

So the parallel components of H are discontinuous by an amount proportional to
the free surface current density.

Equations 7.60-63 are the general boundary conditions for electrodynamics. In
the case of linear media, they can be expressed in terms of E and B alone:

() €1Ef — &Ey = oy, (ii) El —E! =0,
1 1 (7.64)
(ii) Bif — B =0, (iv) —B] — —B) =K; x &.
231 J2%)
In particular, if there is no free charge or free current at the interface, then
(i) e1Ef —eEy =0, Gii) E! —El =0,
1 1 (7.65)
(i) B — By =0, (ivy —B! — —Bl =0.
M1 Mm2

As we shall see in Chapter 9, these equations are the basis for the theory of reflec-
tion and refraction.

More Problems on Chapter 7

Problem 7.41 Two long, straight copper pipes, each of radius a, are held a dis-
tance 2d apart (see Fig. 7.50). One is at potential Vj, the other at — V. The space
surrounding the pipes is filled with weakly conducting material of conductivity o.
Find the current per unit length that flows from one pipe to the other. [Hint: Refer
to Prob. 3.12.]
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(9
a a
hd ] 1 hd
FIGURE 7.50

Problem 7.42 A rare case in which the electrostatic field E for a circuit can actually
be calculated is the following:*® Imagine an infinitely long cylindrical sheet, of
uniform resistivity and radius a. A slot (corresponding to the battery) is maintained
at £V,/2, at ¢ = £, and a steady current flows over the surface, as indicated in
Fig. 7.51. According to Ohm’s law, then,

Via,¢) = ‘;Lj (= < ¢ < +m).

FIGURE 7.51

(a) Use separation of variables in cylindrical coordinates to determine V (s, ¢) in-
side and outside the cylinder. [Answer: (Vo/m) tan™![(s sin¢)/(a + s cos ¢)],
(s <a); (Vo/m)tan"[(asing)/(s +acosp)], (s > a)]

(b) Find the surface charge density on the cylinder. [Answer: (eqVy/ma) tan(¢/2)]

Problem 7.43 The magnetic field outside a long straight wire carrying a steady

current / is
o I ~
B=—-¢.
21 s ¢
The electric field inside the wire is uniform:
Ip
E= _,02 Z,
wa

2M. A. Heald, Am. J. Phys. 52,522 (1984). See also J. A. Hernandes and A. K. T. Assis, Phys. Rev. E
68, 046611 (2003).
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where p is the resistivity and a is the radius (see Exs. 7.1 and 7.3). Question: What is
the electric field outside the wire?? The answer depends on how you complete the
circuit. Suppose the current returns along a perfectly conducting grounded coax-
ial cylinder of radius b (Fig. 7.52). In the region a < s < b, the potential V (s, )
satisfies Laplace’s equation, with the boundary conditions

) Ipz ..
(i) V(a.2) = ——=: (i) V(b.2) =0.
Ta
A y 1
b ] -

Ny

FIGURE 7.52

This does not suffice to determine the answer—we still need to specify boundary
conditions at the two ends (though for a long wire it shouldn’t matter much). In the
literature, it is customary to sweep this ambiguity under the rug by simply stipulat-
ing that V (s, z) is proportional to z: V (s, z) = zf (s). On this assumption:

(a) Determine f(s).
(b) Find E(s, 2).

(c) Calculate the surface charge density o (z) on the wire.

[Answer: V = (—1zp/ma®)[In(s /b)/ In(a/b)] This is a peculiar result, since E, and
o (z) are not independent of z—as one would certainly expect for a truly infinite
wire. ]

Problem 7.44 In a perfect conductor, the conductivity is infinite, so E =0
(Eq. 7.3), and any net charge resides on the surface (just as it does for an imperfect
conductor, in electrostatics).

(a) Show that the magnetic field is constant (dB/d¢r = 0), inside a perfect
conductor.

(b) Show that the magnetic flux through a perfectly conducting loop is constant.

A superconductor is a perfect conductor with the additional property that
the (constant) B inside is in fact zero. (This “flux exclusion” is known as the
Meissner effect.’?)

29This is a famous problem, first analyzed by Sommerfeld, and is known in its most recent incarna-
tion as Merzbacher’s puzzle. A. Sommerfeld, Electrodynamics, p. 125 (New York: Academic Press,
1952); E. Merzbacher, Am. J. Phys. 48, 178 (1980); further references in R. N. Varnay and L. H. Fisher,
Am. J. Phys. 52, 1097 (1984).

30The Meissner effect is sometimes referred to as “perfect diamagnetism,” in the sense that the field
inside is not merely reduced, but canceled entirely. However, the surface currents responsible for this
are free, not bound, so the actual mechanism is quite different.
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(c) Show that the current in a superconductor is confined to the surface.

(d) Superconductivity is lost above a certain critical temperature (7,), which varies
from one material to another. Suppose you had a sphere (radius a) above its
critical temperature, and you held it in a uniform magnetic field B,z while cool-
ing it below 7. Find the induced surface current density K, as a function of the
polar angle 6.

Problem 7.45 A familiar demonstration of superconductivity (Prob. 7.44) is the lev-
itation of a magnet over a piece of superconducting material. This phenomenon can
be analyzed using the method of images.’! Treat the magnet as a perfect dipole m,
a height z above the origin (and constrained to point in the z direction), and pretend
that the superconductor occupies the entire half-space below the xy plane. Because
of the Meissner effect, B = 0 for z < 0, and since B is divergenceless, the normal
(z) component is continuous, so B, = 0 just above the surface. This boundary con-
dition is met by the image configuration in which an identical dipole is placed at
—z, as a stand-in for the superconductor; the two arrangements therefore produce
the same magnetic field in the region z > 0.

(a) Which way should the image dipole point (+z or —z)?

(b) Find the force on the magnet due to the induced currents in the superconductor
(which is to say, the force due to the image dipole). Set it equal to Mg (where
M is the mass of the magnet) to determine the height /2 at which the magnet will
“float.” [Hint: Refer to Prob. 6.3.]

(c) The induced current on the surface of the superconductor (the xy plane) can
be determined from the boundary condition on the fangential component of B
(Eq. 5.76): B = uo(K x z). Using the field you get from the image configura-
tion, show that

3mrh N

K=——" ¢,
27 (r2 + h2)52

where 7 is the distance from the origin.

Problem 7.46 If a magnetic dipole levitating above an infinite superconducting
plane (Prob. 7.45) is free to rotate, what orientation will it adopt, and how high
above the surface will it float?

Problem 7.47 A perfectly conducting spherical shell of radius a rotates about the
z axis with angular velocity o, in a uniform magnetic field B = B z. Calculate the
emf developed between the “north pole” and the equator. [Answer: %Boa)az]

Problem 7.48 Refer to Prob. 7.11 (and use the result of Prob. 5.42): How long does
is take a falling circular ring (radius a, mass m, resistance R) to cross the bottom of
the magnetic field B, at its (changing) terminal velocity?

31W. M. Saslow, Am. J. Phys. 59, 16 (1991).
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1
Electron B A

orbit

Problem 7.49

(a) Referring to Prob. 5.52(a) and Eq. 7.18, show that
0A
at’
for Faraday-induced electric fields. Check this result by taking the divergence
and curl of both sides.

E = (7.66)

(b) A spherical shell of radius R carries a uniform surface charge o. It spins about
a fixed axis at an angular velocity w(¢) that changes slowly with time. Find the
electric field inside and outside the sphere. [Hint: There are two contributions
here: the Coulomb field due to the charge, and the Faraday field due to the
changing B. Refer to Ex. 5.11.]

Problem 7.50 Electrons undergoing cyclotron motion can be sped up by increasing
the magnetic field; the accompanying electric field will impart tangential acceler-
ation. This is the principle of the betatron. One would like to keep the radius of
the orbit constant during the process. Show that this can be achieved by designing
a magnet such that the average field over the area of the orbit is twice the field at
the circumference (Fig. 7.53). Assume the electrons start from rest in zero field,
and that the apparatus is symmetric about the center of the orbit. (Assume also that
the electron velocity remains well below the speed of light, so that nonrelativis-
tic mechanics applies.) [Hint: Differentiate Eq. 5.3 with respect to time, and use
F =ma =qE.]

AT

FIGURE 7.53 FIGURE 7.54

Problem 7.51 An infinite wire carrying a constant current / in the Z direction is
moving in the y direction at a constant speed v. Find the electric field, in the qua-
sistatic approximation, at the instant the wire coincides with the z axis (Fig. 7.54).
[Answer: —(uolv/2ms) sin ¢ Z]

Problem 7.52 An atomic electron (charge ¢) circles about the nucleus (charge Q)
in an orbit of radius r; the centripetal acceleration is provided, of course, by the
Coulomb attraction of opposite charges. Now a small magnetic field d B is slowly
turned on, perpendicular to the plane of the orbit. Show that the increase in kinetic
energy, dT, imparted by the induced electric field, is just right to sustain circular
motion at the same radius r. (That’s why, in my discussion of diamagnetism,
I assumed the radius is fixed. See Sect. 6.1.3 and the references cited there.)
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FIGURE 7.55

Problem 7.53 The current in a long solenoid is increasing linearly with time, so the
flux is proportional to t: ® = at. Two voltmeters are connected to diametrically op-
posite points (A and B), together with resistors (R, and R»), as shown in Fig. 7.55.
What is the reading on each voltmeter? Assume that these are ideal voltmeters
that draw negligible current (they have huge internal resistance), and that a volt-
meter registers — fa "E - dl between the terminals and through the meter. [Answer:
Vi=aR|/(Ry + Ry); Vo, =—aR,/(R; 4+ R,). Notice that V| # V,, even though
they are connected to the same points!**]

FIGURE 7.56

Problem 7.54 A circular wire loop (radius r, resistance R) encloses a region of uni-
form magnetic field, B, perpendicular to its plane. The field (occupying the shaded
region in Fig. 7.56) increases linearly with time (B = at). An ideal voltmeter (infi-
nite internal resistance) is connected between points P and Q.

(a) What is the current in the loop?

(b) What does the voltmeter read? [Answer: ar?/2]

Problem 7.55 In the discussion of motional emf (Sect. 7.1.3) I assumed that the
wire loop (Fig. 7.10) has a resistance R; the current generated is then / = vBh/R.
But what if the wire is made out of perfectly conducting material, so that R is zero?
In that case, the current is limited only by the back emf associated with the self-
inductance L of the loop (which would ordinarily be negligible in comparison with
I R). Show that in this régime the loop (mass m) executes simple harmonic motion,
and find its frequency.”® [Answer: w = Bh/~/mL]

32R. H. Romer, Am. J. Phys. 50, 1089 (1982). See also H. W. Nicholson, Am. J. Phys. 73, 1194 (2005);
B. M. McGuyer, Am. J. Phys. 80, 101 (2012).

3For a collection of related problems, see W. M. Saslow, Am. J. Phys. 55, 986 (1987), and R. H.
Romer, Eur. J. Phys. 11, 103 (1990).
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Problem 7.56

(a) Use the Neumann formula (Eq. 7.23) to calculate the mutual inductance of the
configuration in Fig. 7.37, assuming a is very small (¢ < b, a < z). Compare
your answer to Prob. 7.22.

(b) For the general case (not assuming a is small), show that

15
M= MO;'B‘/abﬂ (1+ §ﬁ2+...>,
where
= ab
- Z2+a2 +b2

l |
. ’\‘\_P Secondary
frlmary ) M (N2 turns)
N, turns q P

FIGURE 7.57

Problem 7.57 Two coils are wrapped around a cylindrical form in such a way that
the same flux passes through every turn of both coils. (In practice this is achieved by
inserting an iron core through the cylinder; this has the effect of concentrating the
flux.) The primary coil has N; turns and the secondary has N, (Fig. 7.57). If the
current / in the primary is changing, show that the emf in the secondary is given by

&E M

=N (7.67)
where & is the (back) emf of the primary. [This is a primitive transformer—a
device for raising or lowering the emf of an alternating current source. By choosing
the appropriate number of turns, any desired secondary emf can be obtained. If you
think this violates the conservation of energy, study Prob. 7.58.]

Problem 7.58 A transformer (Prob. 7.57) takes an input AC voltage of amplitude
V1, and delivers an output voltage of amplitude V5, which is determined by the turns
ratio (V,/V; = N, /Ny). If N, > N;, the output voltage is greater than the input
voltage. Why doesn’t this violate conservation of energy? Answer: Power is the
product of voltage and current; if the voltage goes up, the current must come down.
The purpose of this problem is to see exactly how this works out, in a simplified
model.
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(a) In an ideal transformer, the same flux passes through all turns of the primary
and of the secondary. Show that in this case M?> = L, L,, where M is the mutual
inductance of the coils, and L, L, are their individual self-inductances.

(b) Suppose the primary is driven with AC voltage V;, = V, cos (wt), and the sec-
ondary is connected to a resistor, R. Show that the two currents satisfy the
relations

dI, dI, dl, dI,

L ity 0 L2 i LR
v TMg = Vicosen: - L+ Mos 2

(c) Using the result in (a), solve these equations for /;(#) and I5(¢). (Assume /; has
no DC component.)

(d) Show that the output voltage (V. = I, R) divided by the input voltage (Vi) is
equal to the turns ratio: Vyy/ Vip = N,/ Nj.

(e) Calculate the input power (P, = Viy/,) and the output power (Poy = Voul2),
and show that their averages over a full cycle are equal.

Problem 7.59 An infinite wire runs along the z axis; it carries a current / (z) that is
a function of z (but not of ¢), and a charge density A(¢) that is a function of 7 (but
not of 7).

(a) By examining the charge flowing into a segment dz in a time d¢, show that
dr/dt = —dl1/dz. If we stipulate that A(0) =0 and /(0) =0, show that
Mt) = kt, 1(z) = —kz, where k is a constant.

(b) Assume for a moment that the process is quasistatic, so the fields are given
by Egs. 2.9 and 5.38. Show that these are in fact the exact fields, by confirm-
ing that all four of Maxwell’s equations are satisfied. (First do it in differential
form, for the region s > 0, then in integral form for the appropriate Gaussian
cylinder/Amperian loop straddling the axis.)

Problem 7.60 Suppose J(r) is constant in time but p(r, ¢) is not—conditions that
might prevail, for instance, during the charging of a capacitor.

(a) Show that the charge density at any particular point is a linear function of time:

p(r, 1) = p(r,0) + p(r, 0)t,

where p(r, 0) is the time derivative of p at r+ = 0. [Hint: Use the continuity
equation.]

This is not an electrostatic or magnetostatic configuration;** nevertheless, rather
surprisingly, both Coulomb’s law (Eq. 2.8) and the Biot-Savart law (Eq. 5.42)
hold, as you can confirm by showing that they satisfy Maxwell’s equations. In
particular:

34Some authors would regard this as magnetostatic, since B is independent of #. For them, the Biot-
Savart law is a general rule of magnetostatics, but V- J = 0 and V x B = uoJ apply only under the
additional assumption that p is constant. In such a formulation, Maxwell’s displacement term can
(in this very special case) be derived from the Biot-Savart law, by the method of part (b). See D. F.
Bartlett, Am. J. Phys. 58, 1168 (1990); D. J. Griffiths and M. A. Heald, Am. J. Phys. 59, 111 (1991).
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(b) Show that
Mo J(r/) X i ’
Br)=— | ——d
) 47 / 2 ’

obeys Ampere’s law with Maxwell’s displacement current term.

Problem 7.61 The magnetic field of an infinite straight wire carrying a steady cur-
rent / can be obtained from the displacement current term in the Ampere/Maxwell
law, as follows: Picture the current as consisting of a uniform line charge A mov-
ing along the z axis at speed v (so that I = Av), with a tiny gap of length €, which
reaches the origin at time = 0. In the next instant (up to ¢ = €/v) there is no real
current passing through a circular Amperian loop in the xy plane, but there is a
displacement current, due to the “missing” charge in the gap.

(a) Use Coulomb’s law to calculate the z component of the electric field, for points
in the xy plane a distance s from the origin, due to a segment of wire with
uniform density —X extending from z; = vt — € to z, = vt.

(b) Determine the flux of this electric field through a circle of radius a in the xy
plane.

(c) Find the displacement current through this circle. Show that /1, is equal to 7, in
the limit as the gap width (€) goes to zero.*

Problem 7.62 A certain transmission line is constructed from two thin metal “rib-
bons,” of width w, a very small distance 7 < w apart. The current travels down
one strip and back along the other. In each case, it spreads out uniformly over the
surface of the ribbon.

(a) Find the capacitance per unit length, C.
(b) Find the inductance per unit length, L.

(c) What is the product £C, numerically? [£ and C will, of course, vary from one
kind of transmission line to another, but their product is a universal constant—
check, for example, the cable in Ex. 7.13—provided the space between the con-
ductors is a vacuum. In the theory of transmission lines, this product is related
to the speed with which a pulse propagates down the line: v = 1/+/£C.]

(d) If the strips are insulated from one another by a nonconducting material of per-
mittivity € and permeability p, what then is the product £C? What is the propa-
gation speed? [Hint: see Ex. 4.6; by what factor does L change when an inductor
is immersed in linear material of permeability 7]

Problem 7.63 Prove Alfven’s theorem: In a perfectly conducting fluid (say, a gas
of free electrons), the magnetic flux through any closed loop moving with the fluid
is constant in time. (The magnetic field lines are, as it were, “frozen” into the fluid.)

(a) Use Ohm’s law, in the form of Eq. 7.2, together with Faraday’s law, to prove
that if o = oo and J is finite, then
oB

— =V B).
a7 x (v x B)

35For a slightly different approach to the same problem, see W. K. Terry, Am. J. Phys. 50, 742 (1982).
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FIGURE 7.58

(b) LetS be the surface bounded by the loop (P) at time 7, and S’ a surface bounded
by the loop in its new position (P’) at time ¢ + dt (see Fig. 7.58). The change
in flux is

dd =/ B(r + dt) -da—/ B(¢) - da.
’ s
Use V - B = 0 to show that
f B(t + dt) -da+/ B(t+dt)-da=/ B(t +dt) - da
’ R S

(where R is the “ribbon” joining P and P’), and hence that

B
dq):dl‘/ —-da—/ B(r +dt) - da
s 0t R

(for infinitesimal dt). Use the method of Sect. 7.1.3 to rewrite the second inte-
gral as

dt%(va)-dl,
P

and invoke Stokes’ theorem to conclude that

0] B
d—:/ 8——Vx(va) -da.
dt s \ ot

Together with the result in (a), this proves the theorem.
Problem 7.64

(a) Show that Maxwell’s equations with magnetic charge (Eq. 7.44) are invariant
under the duality transformation

E = Ecosa + cBsina,

cB/ = cBcosa —Esm.oz, (7.68)
cq, = ¢q.Cco8d + g, sina,
q,, = qmcosa —cq,sina,

where ¢ = 1/, /€pito and « is an arbitrary rotation angle in “E/B-space.” Charge
and current densities transform in the same way as g, and ¢,,. [This means, in



354 Chapter 7 Electrodynamics

particular, that if you know the fields produced by a configuration of electric
charge, you can immediately (using &« = 90°) write down the fields produced
by the corresponding arrangement of magnetic charge.]

(b) Show that the force law (Prob. 7.38)

1
F=q.(E+VxB)+gn (B——zvxE> (7.69)
c

is also invariant under the duality transformation.




Intermission

All of our cards are now on the table, and in a sense my job is done. In the
first seven chapters we assembled electrodynamics piece by piece, and now, with
Maxwell’s equations in their final form, the theory is complete. There are no
more laws to be learned, no further generalizations to be considered, and (with
perhaps one exception) no lurking inconsistencies to be resolved. If yours is a
one-semester course, this would be a reasonable place to stop.

But in another sense we have just arrived at the starting point. We are at last
in possession of a full deck—it’s time to deal. This is the fun part, in which one
comes to appreciate the extraordinary power and richness of electrodynamics. In
a full-year course there should be plenty of time to cover the remaining chapters,
and perhaps to supplement them with a unit on plasma physics, say, or AC circuit
theory, or even a little general relativity. But if you have room for only one topic,
I’d recommend Chapter 9, on Electromagnetic Waves (you’ll probably want to
skim Chapter 8 as preparation). This is the segue to Optics, and is historically the
most important application of Maxwell’s theory.

355



CHAPTER

Conservation Laws

8.1 B CHARGE AND ENERGY

8.1.1 M The Continuity Equation

356

In this chapter we study conservation of energy, momentum, and angular momen-
tum, in electrodynamics. But I want to begin by reviewing the conservation of
charge, because it is the paradigm for all conservation laws. What precisely does
conservation of charge tell us? That the total charge in the universe is constant?
Well, sure—that’s global conservation of charge. But local conservation of charge
is a much stronger statement: If the charge in some region changes, then exactly
that amount of charge must have passed in or out through the surface. The tiger
can’t simply rematerialize outside the cage; if it got from inside to outside it must
have slipped through a hole in the fence.

Formally, the charge in a volume V is

Q1) = fvp(r, 1) dr, (8.1)

and the current flowing out through the boundary S is ygs J - da, so local conser-
vation of charge says

d
_Q=—§£J-da. (8.2)
dt S

Using Eq. 8.1 to rewrite the left side, and invoking the divergence theorem on the
right, we have

0

/—'Odr:—/V-Jdr, (8.3)
v 01 %

and since this is true for any volume, it follows that

8p__ .
5 = v-J (8.4)

This is the continuity equation—the precise mathematical statement of lo-
cal conservation of charge. It can be derived from Maxwell’s equations—
conservation of charge is not an independent assumption; it is built into the laws
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of electrodynamics. It serves as a constraint on the sources (p and J). They can’t
be just any old functions—they have to respect conservation of charge.!

The purpose of this chapter is to develop the corresponding equations for local
conservation of energy and momentum. In the process (and perhaps more impor-
tant) we will learn how to express the energy density and the momentum density
(the analogs to p), as well as the energy “current” and the momentum “current”
(analogous to J).

8.1.2 W Poynting’s Theorem

In Chapter 2, we found that the work necessary to assemble a static charge distri-
bution (against the Coulomb repulsion of like charges) is (Eq. 2.45)

€
W, = EOszdt,

where E is the resulting electric field. Likewise, the work required to get currents
going (against the back emf) is (Eq. 7.35)

1
W, =— | B%dr,
210

where B is the resulting magnetic field. This suggests that the total energy stored
in electromagnetic fields, per unit volume, is

1 1
u=— <60E2 + —BZ> ) (8.5)
2 Mo

In this section I will confirm Eq. 8.5, and develop the energy conservation law for
electrodynamics.

Suppose we have some charge and current configuration which, at time ¢, pro-
duces fields E and B. In the next instant, d¢, the charges move around a bit.
Question: How much work, dW, is done by the electromagnetic forces acting
on these charges, in the interval d¢? According to the Lorentz force law, the work
done on a charge ¢ is

F-dl=qE+vxB)-vdt =qE-vdt.

In terms of the charge and current densities, ¢ — pdt and pv — J,? so the rate
at which work is done on all the charges in a volume V is

dw
— :/V(E.J)dr. (8.6)

IThe continuity equation is the only such constraint. Any functions p(r,¢) and J(r,t) consistent
with Eq. 8.4 constitute possible charge and current densities, in the sense of admitting solutions to
Maxwell’s equations.

2This is a slippery equation: after all, if charges of both signs are present, the net charge density can
be zero even when the current is not—in fact, this is the case for ordinary current-carrying wires. We
should really treat the positive and negative charges separately, and combine the two to get Eq. 8.6,
with J = P+Vy + p_vV_.
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Evidently E - J is the work done per unit time, per unit volume—which is to
say, the power delivered per unit volume. We can express this quantity in terms of
the fields alone, using the Ampere-Maxwell law to eliminate J:

1 JE
E-J=—E - (VxB)—eE- —.
Mo ot

From product rule 6,
V.- (ExB)=B-(VxE)—E-(V xB).
Invoking Faraday’s law (V x E = —dB/dt), it follows that

B
E-(VxB):—B-E—V-(ExB).
Meanwhile,
B 10 oE 10
B-— =-—(B%), and E.— =-—(EY, (8.7)
ot 2 0t ot 2 0t
SO
10 ) I, 1
E-J=———\|¢E°"+—B")— —V.(ExB). (8.8)
2 0t o o

Putting this into Eq. 8.6, and applying the divergence theorem to the second
term, we have

dW_ d 1
dt

1 1
cE> + —Bz) dt — — @ (E x B) - da, (8.9)

dt Jy 2 Lo Mo Js

where S is the surface bounding V. This is Poynting’s theorem; it is the “work-
energy theorem” of electrodynamics. The first integral on the right is the total
energy stored in the fields, [ u dt (Eq. 8.5). The second term evidently represents
the rate at which energy is transported out of V, across its boundary surface, by the
electromagnetic fields. Poynting’s theorem says, then, that the work done on the
charges by the electromagnetic force is equal to the decrease in energy remaining
in the fields, less the energy that flowed out through the surface.

The energy per unit time, per unit area, transported by the fields is called the
Poynting vector:

(E x B). (8.10)

Specifically, S -da is the energy per unit time crossing the infinitesimal sur-
face da—the energy flux (so S is the energy flux density).> We will see many

3If you're very fastidious, you’ll notice a small gap in the logic here: We know from Eq. 8.9 that
¢S - da is the total power passing through a closed surface, but this does not prove that ['S - da is
the power passing through any open surface (there could be an extra term that integrates to zero over
all closed surfaces). This is, however, the obvious and natural interpretation; as always, the precise
location of energy is not really determined in electrodynamics (see Sect. 2.4.4).
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applications of the Poynting vector in Chapters 9 and 11, but for the moment I am
mainly interested in using it to express Poynting’s theorem more compactly:
aw — d

—_— = dt — @ S-da. 8.11
dt dt Vu ‘ fg a ( )

What if no work is done on the charges in V—what if, for example, we are in
a region of empty space, where there is no charge? In that case dW /dt = 0, so

ou
/‘Edrz—dea=—/(VS)dT,

ou
ot

and hence

=-V.S. (8.12)

This is the “continuity equation” for energy—u (energy density) plays the role of
p (charge density), and S takes the part of J (current density). It expresses local
conservation of electromagnetic energy.

In general, though, electromagnetic energy by itself is not conserved (nor is
the energy of the charges). Of course not! The fields do work on the charges, and
the charges create fields—energy is tossed back and forth between them. In the
overall energy economy, you must include the contributions of both the matter
and the fields.

Example 8.1. When current flows down a wire, work is done, which shows up
as Joule heating of the wire (Eq. 7.7). Though there are certainly easier ways to
do it, the energy per unit time delivered to the wire can be calculated using the
Poynting vector. Assuming it’s uniform, the electric field parallel to the wire is

E=—,
L

where V is the potential difference between the ends and L is the length of the

wire (Fig. 8.1). The magnetic field is “circumferential”’; at the surface (radius a)

it has the value

_ ol

B = .
2mwa

< L >

FIGURE 8.1
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Accordingly, the magnitude of the Poynting vector is

1Vl VI

"~ uo L2wa  2mal’

and it points radially inward. The energy per unit time passing in through the
surface of the wire is therefore

/S-da: SQ2mal)=VI,

which is exactly what we concluded, on much more direct grounds, in Sect. 7.1.1 2

Problem 8.1 Calculate the power (energy per unit time) transported down the
cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential
difference V, and carry current / (down one and back up the other).

Problem 8.2 Consider the charging capacitor in Prob. 7.34.

(a) Find the electric and magnetic fields in the gap, as functions of the distance s
from the axis and the time 7. (Assume the charge is zero at t = 0.)

(b) Find the energy density u., and the Poynting vector S in the gap. Note espe-
cially the direction of S. Check that Eq. 8.12 is satisfied.

(c) Determine the total energy in the gap, as a function of time. Calculate the total
power flowing into the gap, by integrating the Poynting vector over the appro-
priate surface. Check that the power input is equal to the rate of increase of
energy in the gap (Eq. 8.9—in this case W = 0, because there is no charge in
the gap). [If you’re worried about the fringing fields, do it for a volume of radius
b < a well inside the gap.]

8.2 R MOMENTUM

8.2.1 M Newton’s Third Law in Electrodynamics

Imagine a point charge g traveling in along the x axis at a constant speed v.
Because it is moving, its electric field is not given by Coulomb’s law; never-
theless, E still points radially outward from the instantaneous position of the
charge (Fig. 8.2a), as we’ll see in Chapter 10. Since, moreover, a moving point
charge does not constitute a steady current, its magnetic field is not given by the
Biot-Savart law. Nevertheless, it’s a fact that B still circles around the axis in a
manner suggested by the right-hand rule (Fig. 8.2b); again, the proof will come in
Chapter 10.

4What about energy flow down the wire? For a discussion, see M. K. Harbola, Am. J. Phys. 78, 1203
(2010). For a more sophisticated geometry, see B. S. Davis and L. Kaplan, Am. J. Phys. 79, 1155
(2011).
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Now suppose this charge encounters an identical one, proceeding in at the same
speed along the y axis. Of course, the electromagnetic force between them would
tend to drive them off the axes, but let’s assume that they’re mounted on tracks,
or something, so they’re obliged to maintain the same direction and the same
speed (Fig. 8.3). The electric force between them is repulsive, but how about the
magnetic force? Well, the magnetic field of ¢; points into the page (at the position
of ¢»), so the magnetic force on g, is toward the right, whereas the magnetic
field of ¢, is out of the page (at the position of ¢;), and the magnetic force on
q1 is upward. The net electromagnetic force of q| on q, is equal but not opposite
to the force of q; on qy, in violation of Newton’s third law. In electrostatics and
magnetostatics the third law holds, but in electrodynamics it does not.

Well, that’s an interesting curiosity, but then, how often does one actually use
the third law, in practice? Answer: All the time! For the proof of conservation of
momentum rests on the cancellation of internal forces, which follows from the
third law. When you tamper with the third law, you are placing conservation of
momentum in jeopardy, and there is hardly any principle in physics more sacred
than that.

Momentum conservation is rescued, in electrodynamics, by the realization
that the fields themselves carry momentum. This is not so surprising when you

v
F\Lil
q> N Fm
\\\ F
VZV . m
RN ] .
Vl X
B, F,

FIGURE 8.3
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consider that we have already attributed energy to the fields. Whatever momen-
tum is lost to the particles is gained by the fields. Only when the field momentum

is added to the mechanical momentum is momentum conservation restored.

8.2.2 M Maxwell’s Stress Tensor

Let’s calculate the total electromagnetic force on the charges in volume V:

FZ/(E—i—VXB),Od‘L’:f(,OE—l—JXB)d‘L’. (8.13)
v Y

The force per unit volume is
f=pE-+JxB. (8.14)

As before, I propose to express this in terms of fields alone, eliminating o and
J by using Maxwell’s equations (i) and (iv):

1 oE
f=¢(V-E)E4+|—V xB—¢— | xB.
Ho ot
Now
9 (E x B) oE B|+(E oB
—(ExB)=|— x x — ),
ot ot ot

and Faraday’s law says

B
— = -V x E,
at
SO
E 0
— xB=—ExB)+Ex (VxE).
arx ar(XH x(VxE)
Thus

f=¢I[(V-E)E—-E x (V xE)]—ML[Bx (V xB)]—eO%(ExB).
0
(8.15)

Just to make things look more symmetrical, let’s throw in a term (V - B)B;
since V - B = 0, this costs us nothing. Meanwhile, product rule 4 says

V(E*) =2(E-V)E +2E x (V x E),

SO

E x (VxE)= %V(Ez) —(E- V)E,
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and the same goes for B. Therefore,

1
f=¢[(V -E)E+(E.V)E]+M—[(V -B)B + (B - V)B]
0
(8.16)
1V cE? + ! B?) —e¢ a(ExB)
2 0 Mo 0 ot '
Ugly! But it can be simplified by introducing the Maxwell stress tensor,
1 ) 1 1 )
Tij = € ElE]_E(SUE +% BlB]_ESUB . (817)

The indices i and j refer to the coordinates x, y, and z, so the stress tensor has a

total of nine components (T, Tyy, Ty;, Tyx, and so on). The Kronecker delta,

8ij, 1s 1 if the indices are the same (8,, = d,, = §,; = 1) and zero otherwise
(Sxy = 5)61 = 8)}1 - O). ThUS

1 1
Txx=QGO(Ef—EyZ-—Ef)JFz—M(Bf—33—33)’

1
Txy = EO(ExEy) + (BxBy)’
o

and so on.
Because it carries two indices, where a vector has only one, T;; is sometimes

written with a double arrow: T . One can form the dot product of T with a vector
a, in two ways—on the left, and on the right:

(aT) = ary, (T-a) = Y Tiar (8.18)
J i=x,y,2 J I=X,y,2
The resulting object, which has one remaining index, is itself a vector. In particu-
lar, the divergence of T has as its Jjth component
1
(V - ?)j = & [(V E)E; + (E-V)E, — EVJ-EZ]
1 1 5
+— | (V-B)B;+ (B -V)B; — -V;B7|.
Ho 2

Thus the force per unit volume (Eq. 8.16) can be written in the much tidier form

3S
f:V-‘T—eoMOE, (8.19)

where S is the Poynting vector (Eq. 8.10).
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The total electromagnetic force on the charges in V (Eq. 8.13) is

d
F = 55 ‘T’-da—eouo—f Sdr. (8.20)
S dt Jy

(I used the divergence theorem to convert the first term to a surface integral.) In
the static case the second term drops out, and the electromagnetic force on the
charge configuration can be expressed entirely in terms of the stress tensor at the
boundary:

F = jﬁ T .da (static). (8.21)
S

Physically, T is the force per unit area (or stress) acting on the surface. More
precisely, 7;; is the force (per unit area) in the ith direction acting on an ele-
ment of surface oriented in the jth direction—*"“diagonal” elements (T, Ty, T%;)
represent pressures, and “off-diagonal” elements (7%, T, etc.) are shears.

Example 8.2. Determine the net force on the “northern” hemisphere of a uni-
formly charged solid sphere of radius R and charge Q (the same as Prob. 2.47,
only this time we’ll use the Maxwell stress tensor and Eq. 8.21).

X Disk

FIGURE 8.4

Solution
The boundary surface consists of two parts—a hemispherical “bowl” at radius R,
and a circular disk at & = 7 /2 (Fig. 8.4). For the bowl,

da = R’>sin0dodeot

and

1
E =
47'[6()

2,
RZ
In Cartesian components,

IF=sinfcos¢X+sinfsingy + cosh z,
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SO

2
T, = eE.E, = ¢ ( > sin 6 cos f cos ¢,

47 ey R?

0 \. .
T., =e€)E.E, =€y | ———— | sinf cosbsing,
< 0=%y 0<4JT6()R2 ¢

€0

Ie =+

2
€ Q :
(E2—E;—E}) = 50 (4ﬂ€OR2) (cos”6 —sin*6).  (8.22)

The net force is obviously in the z-direction, so it suffices to calculate

(‘T . da)z = T, da, + Ty day, + T.. da, = %0 (4::%013)2 sin0 cos 6 d d¢.
The force on the “bowl” is therefore
Foout = %0 <4ﬂ§0R>2 o /O " 0 cos0 6 = é SQ—I;. (8.23)
Meanwhile, for the equatorial disk,
da=—rdrdoi, (8.24)

and (since we are now inside the sphere)

1 Q 1 0 A e A
= 47160Fr = mﬁr(cosqu-i—smgby).
Thus
€0 (2 2 2 €0 Q ’ 2
TZZ=E(EZ—EX—E},)=—?<W> r?,
and hence

(‘T*-da) :6—0( Q >2r3drd¢.

z 2 47T6()R3

The force on the disk is therefore

2 R 2

1

Fo =92 )\ o / Pdr = o (8.25)
2 47T60R3 0 477.'60 16R2

Combining Eqs. 8.23 and 8.25, I conclude that the net force on the northern hemi-
sphere is

1 307
" 4mey 16R?

(8.26)
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Incidentally, in applying Eq. 8.21, any volume that encloses all of the charge
in question (and no other charge) will do the job. For example, in the present case
we could use the whole region z > 0. In that case the boundary surface consists
of the entire xy plane (plus a hemisphere at r = oo, but £ = 0 out there, so it
contributes nothing). In place of the “bowl,” we now have the outer portion of the

plane (r > R). Here
2
I, = _E_O g l
a 2 \4ney) r*
(Eq. 8.22 with & = /2 and R — r), and da is given by Eq. 8.24, so

(T da)Z _ (£>2 %dr o,

2 \4rmey) r

and the contribution from the plane forr > R is

o 0 \° | 1 Q2
b 27 —dr = =
2 \4re RT3 4eq 8R?

the same as for the bowl (Eq. 8.23).

I hope you didn’t get too bogged down in the details of Ex. 8.2. If so, take a
moment to appreciate what happened. We were calculating the force on a solid
object, but instead of doing a volume integral, as you might expect, Eq. 8.21
allowed us to set it up as a surface integral; somehow the stress tensor sniffs
out what is going on inside.

! Problem 8.3 Calculate the force of magnetic attraction between the northern
and southern hemispheres of a uniformly charged spinning spherical shell, with
radius R, angular velocity w, and surface charge density o. [This is the same as
Prob. 5.44, but this time use the Maxwell stress tensor and Eq. 8.21.]

Problem 8.4

(a) Consider two equal point charges ¢, separated by a distance 2a. Construct the
plane equidistant from the two charges. By integrating Maxwell’s stress tensor
over this plane, determine the force of one charge on the other.

(b) Do the same for charges that are opposite in sign.

8.2.3 H Conservation of Momentum

According to Newton’s second law, the force on an object is equal to the rate of
change of its momentum:

F= dpmech.
dt
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Equation 8.20 can therefore be written in the form>

dpmech d / %
= —copo— | Sd T . da, 8.27
o €oro— , T+ A a (8.27)

where Pmech 1S the (mechanical) momentum of the particles in volume V. This
expression is similar in structure to Poynting’s theorem (Eq. 8.11), and it invites
an analogous interpretation: The first integral represents momentum stored in the
fields:

P = oo f Sdr, (8.28)
%

while the second integral is the momentum per unit time flowing in through the
surface.

Equation 8.27 is the statement of conservation of momentum in electro-
dynamics: If the mechanical momentum increases, either the field momentum
decreases, or else the fields are carrying momentum into the volume through the
surface. The momentum density in the fields is evidently

g = noeoS = €o(E x B), (8.29)

and the momentum flux transported by the fields is -T (specifically, ~7T .dais
the electromagnetic momentum per unit time passing through the area da).

If the mechanical momentum in V is not changing (for example, if we are
talking about a region of empty space), then

f%dr:%?-dasz-?dT,

8 _v. 7. (8.30)
ot
This is the “continuity equation” for electromagnetic momentum, with g (momen-
tum density) in the role of p (charge density) and -T playing the part of J; it
expresses the local conservation of field momentum. But in general (when there
are charges around) the field momentum by itself, and the mechanical momentum
by itself, are not conserved—charges and fields exchange momentum, and only
the total is conserved.

Notice that the Poynting vector has appeared in two quite different roles: S
itself is the energy per unit area, per unit time, transported by the electromagnetic
fields, while 10€oS is the momentum per unit volume stored in those fields.®

and hence

SLet’s assume the only forces acting are electromagnetic. You can include other forces if you like—
both here and in the discussion of energy conservation—but they are just a distraction from the essen-
tial story.

OThis is no coincidence—see R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics (Reading, Mass.: Addison-Wesley, 1964), Vol. II, Section 27-6.
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Similarly, T plays a dual role: T itself is the electromagnetic stress (force
per unit area) acting on a surface, and — T describes the flow of momentum (itis
the momentum current density) carried by the fields.

Example 8.3. A long coaxial cable, of length /, consists of an inner conductor
(radius a) and an outer conductor (radius b). It is connected to a battery at one end
and a resistor at the other (Fig. 8.5). The inner conductor carries a uniform charge
per unit length A, and a steady current / to the right; the outer conductor has the
opposite charge and current. What is the electromagnetic momentum stored in the
fields?

FIGURE 8.5
Solution
The fields are
1 A I -
E= 25, B=HKZg
2mey S 2w s

The Poynting vector is therefore
AL
= ——1
4r2€)s?

So energy is flowing down the line, from the battery to the resistor. In fact, the
power transported is

A [P v
P=/S-da=— —2nsds = In(b/a) =1V,
27‘[60

dm2ey J, s2
as it should be.
The momentum in the fields is
Ao (01 A A7
p= ,uoe()/Sdr _ Mo zf —2rsds = Ho In(b/a)z = — 1.
dr? ), s Vi c?

This is an astonishing result. The cable is not moving, E and B are static, and yet
we are asked to believe that there is momentum in the fields. If something tells



8.2 Momentum 369

you this cannot be the whole story, you have sound intuitions. But the resolution
of this paradox will have to await Chapter 12 (Ex. 12.12).

Suppose now that we turn up the resistance, so the current decreases. The
changing magnetic field will induce an electric field (Eq. 7.20):

dl .
E = ﬂ—lns+K Z.
27 dt

This field exerts a force on £A:
o dl ,LL())J dl

[L()d[ A A S
Fea |2 e k|- |2 mps k= -2 1w
|:2rrdt nat ]z [2ndt o ]Z 2w ar Pl

The total momentum imparted to the cable, as the current drops from 7 to 0, is
therefore

worl
b

l n
Prncch = f Far = " vy,

which is precisely the momentum originally stored in the fields.

Problem 8.5 Imagine two parallel infinite sheets, carrying uniform surface charge
+o (on the sheet at z = d) and —o (at z = 0). They are moving in the y direction
at constant speed v (as in Problem 5.17).

(a) What is the electromagnetic momentum in a region of area A?

(b) Now suppose the top sheet moves slowly down (speed u) until it reaches the bot-
tom sheet, so the fields disappear. By calculating the total force on the charge
(g = g A), show that the impulse delivered to the sheet is equal to the mo-
mentum originally stored in the fields. [Hint: As the upper plate passes by, the
magnetic field drops to zero, inducing an electric field that delivers an impulse
to the lower plate.]

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field
E = E Z) is placed in a uniform magnetic field B = B X, as shown in Fig. 8.6.

ZA

Sl oA

IS¥
e,
—
=

—
—>
!
A

FIGURE 8.6
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(a) Find the electromagnetic momentum in the space between the plates.

(b) Now a resistive wire is connected between the plates, along the z axis, so that
the capacitor slowly discharges. The current through the wire will experience
a magnetic force; what is the total impulse delivered to the system, during the
discharge?’

Problem 8.7 Consider an infinite parallel-plate capacitor, with the lower plate (at
z = —d/2) carrying surface charge density —o, and the upper plate (at z = +d/2)
carrying charge density +o.

(a) Determine all nine elements of the stress tensor, in the region between the
plates. Display your answer as a 3 x 3 matrix:

sz Tx y T\ z
Ty X T)',V T)'l
T, T, T.

(b) Use Eq. 8.21 to determine the electromagnetic force per unit area on the top
plate. Compare Eq. 2.51.

(c) What is the electromagnetic momentum per unit area, per unit time, crossing
the xy plane (or any other plane parallel to that one, between the plates)?

(d) Of course, there must be mechanical forces holding the plates apart—perhaps
the capacitor is filled with insulating material under pressure. Suppose we sud-
denly remove the insulator; the momentum flux (c) is now absorbed by the
plates, and they begin to move. Find the momentum per unit time delivered to
the top plate (which is to say, the force acting on it) and compare your answer
to (b). [Note: This is not an additional force, but rather an alternative way of
calculating the same force—in (b) we got it from the force law, and in (d) we
do it by conservation of momentum.]

8.2.4 H Angular Momentum

By now, the electromagnetic fields (which started out as mediators of forces
between charges) have taken on a life of their own. They carry energy (Eq. 8.5)

1 2 L
u=—-\(eE“+—B"]), (8.31)
2 Mo
and momentum (Eq. 8.29)
g =¢(E xB), (8.32)

"There is much more to be said about this problem, so don’t get too excited if your answers to (a) and
(b) appear to be consistent. See D. Babson, et al., Am. J. Phys. 77, 826 (2009).
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and, for that matter, angular momentum:
L=rxg=¢y[rx (ExB)]. (8.33)

Even perfectly static fields can harbor momentum and angular momentum, as
long as E x B is nonzero, and it is only when these field contributions are included
that the conservation laws are sustained.

Example 8.4. Imagine a very long solenoid with radius R, n turns per unit
length, and current /. Coaxial with the solenoid are two long cylindrical (non-
conducting) shells of length [—one, inside the solenoid at radius a, carries a
charge + Q, uniformly distributed over its surface; the other, outside the solenoid
at radius b, carries charge —Q (see Fig. 8.7; [ is supposed to be much greater
than ). When the current in the solenoid is gradually reduced, the cylinders begin
to rotate, as we found in Ex. 7.8. Question: Where does the angular momentum
come from?

A\l
15___‘1%_’

FIGURE 8.7

Solution
It was initially stored in the fields. Before the current was switched off, there was
an electric field,

= 0 -8 (a <s <b),
2meol s

in the region between the cylinders, and a magnetic field,

B=pumnlz (s <R),

8This is a variation on the “Feynman disk paradox” (R. P. Feynman, R. B. Leighton, and M. Sands,
The Feynman Lectures, vol 2, pp. 17-5 (Reading, Mass.: Addison-Wesley, 1964) suggested by F. L.
Boos, Jr. (Am. J. Phys. 52,756 (1984)). A similar model was proposed earlier by R. H. Romer (Am. J.
Phys. 34, 772 (1966)). For further references, see T.-C. E. Ma, Am. J. Phys. 54, 949 (1986).
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inside the solenoid. The momentum density (Eq. 8.29) was therefore

 ponlQ 4
- 2mls ¢,

inthe regiona < s < R. The z component of the angular momentum density was

ponl Q
2nl

(rxg),=-—

which is constant (independent of s). To get the fotal angular momentum in the
fields, we simply multiply by the volume, 7 (R?> — a?)/:°

1 .
L= —E,u,onl O(R?> — a*) 1. (8.34)

When the current is turned off, the changing magnetic field induces a circum-
ferential electric field, given by Faraday’s law:

1 dI RZ(’AS s> R)
—= —_— >
P TR S ’
E =
1 dl -
_EMOHES é, (s < R).

Thus the torque on the outer cylinder is

N (—0E) = ~pnortL;
=rx(— = —on —1,
b 2#0 di

and it picks up an angular momentum
L ! QR”fO‘”dz ! IQR*Z
= — z —dt = —— Z.
b= 5 Hon i > Hon

Similarly, the torque on the inner cylinder is

1 al ,
N, = —EMOHQQZE z,

and its angular momentum increase is
1 2 A
L, = Euolea Z.

So it all works out: L., = L, + L;. The angular momentum lost by the fields is
precisely equal to the angular momentum gained by the cylinders, and the total
angular momentum (fields plus matter) is conserved.

9The radial component integrates to zero, by symmetry.
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Problem 8.8 In Ex. 8.4, suppose that instead of turning off the magnetic field (by
reducing ) we turn off the electric field, by connecting a weakly!® conducting
radial spoke between the cylinders. (We’ll have to cut a slot in the solenoid, so
the cylinders can still rotate freely.) From the magnetic force on the current in the
spoke, determine the total angular momentum delivered to the cylinders, as they
discharge (they are now rigidly connected, so they rotate together). Compare the
initial angular momentum stored in the fields (Eq. 8.34). (Notice that the mechanism
by which angular momentum is transferred from the fields to the cylinders is entirely
different in the two cases: in Ex. 8.4 it was Faraday’s law, but here it is the Lorentz
force law.)

Problem 8.9 Two concentric spherical shells carry uniformly distributed charges
+Q (at radius a) and —Q (at radius b > a). They are immersed in a uniform mag-
netic field B = B, Z.

(a) Find the angular momentum of the fields (with respect to the center).

(b) Now the magnetic field is gradually turned off. Find the torque on each sphere,
and the resulting angular momentum of the system.

! Problem 8.10'' Imagine an iron sphere of radius R that carries a charge Q and a
uniform magnetization M = MZz. The sphere is initially at rest.

(a) Compute the angular momentum stored in the electromagnetic fields.

(b) Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by
heating it up past the Curie point). Use Faraday’s law to determine the induced
electric field, find the torque this field exerts on the sphere, and calculate the
total angular momentum imparted to the sphere in the course of the demagneti-
zation.

(c) Suppose instead of demagnetizing the sphere we discharge it, by connecting a
grounding wire to the north pole. Assume the current flows over the surface in
such a way that the charge density remains uniform. Use the Lorentz force law
to determine the torque on the sphere, and calculate the total angular momentum
imparted to the sphere in the course of the discharge. (The magnetic field is
discontinuous at the surface ... does this matter?) [Answer: % oM QR?]

8.3 @M MAGNETIC FORCES DO NO WORK!?

This is perhaps a good place to revisit the old paradox that magnetic forces do no
work (Eq. 5.11). What about that magnetic crane lifting the carcass of a junked
car? Somebody is doing work on the car, and if it’s not the magnetic field, who

19In Ex. 8.4 we turned the current off slowly, to keep things quasistatic; here we reduce the electric
field slowly to keep the displacement current negligible.

""This version of the Feynman disk paradox was proposed by N. L. Sharma (Am. J. Phys. 56, 420
(1988)); similar models were analyzed by E. M. Pugh and G. E. Pugh, Am. J. Phys. 35, 153 (1967)
and by R. H. Romer, Am. J. Phys. 35, 445 (1967).

12This section can be skipped without loss of continuity. I include it for those readers who are disturbed
by the notion that magnetic forces do no work.
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FIGURE 8.8

is it? The car is ferromagnetic; in the presence of the magnetic field, it contains
a lot of microscopic magnetic dipoles (spinning electrons, actually), all lined up.
The resulting magnetization is equivalent to a bound current running around the
surface, so let’s model the car as a circular current loop—in fact, let’s make it an
insulating ring of line charge A rotating at angular velocity  (Fig. 8.8).

The upward magnetic force on the loop is (Eq. 6.2)

F =2nlaB;, (8.35)

where B; is the radial component of the magnet’s field,'* and I = Awa. If the ring
rises a distance dz (while the magnet itself stays put), the work done on it is

dW = 2ra*)wB, dz. (8.36)

This increases the potential energy of the ring. Who did the work? Naively, it ap-
pears that the magnetic field is responsible, but we have already learned (Ex. 5.3)
that this is not the case—as the ring rises, the magnetic force is perpendicular to
the net velocity of the charges in the ring, so it does no work on them.

At the same time, however, a motional emf is induced in the ring, which
opposes the flow of charge, and hence reduces its angular velocity:

dd

£=-""
dr

Here d® is the flux through the “ribbon” joining the ring at time ¢ to the ring at
time ¢ + dt (Fig. 8.9):

d® = B,2radz.

—

FIGURE 8.9

13Note that the field has to be nonuniform, or it won’t lift the car at all.
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Now
&= ﬁgf-dl= fQma),

where f is the force per unit charge. So

dz
= —B,—, 8.37
f ST (8.37)
the force on a segment of length d/ is fA dl, the torque on the ring is
d
N=a (—BS—Z> AQ2ra),
dt
and the work done (slowing the rotation) is N d¢ = Nw dt, or
dW = —2ma* 0B, dz. (8.38)

The ring slows down, and the rotational energy it loses (Eq. 8.38) is precisely
equal to the potential energy it gains (Eq. 8.36). All the magnetic field did was
convert energy from one form to another. If you’ll permit some sloppy language,
the work done by the vertical component of the magnetic force (Eq. 8.35) is equal
and opposite to the work done by its horizontal component (Eq. 8.37).'*

What about the magnet? Is it completely passive in this process? Suppose we
model it as a big circular loop (radius b), resting on a table and carrying a current
Ip; the “junk car” is a relatively small current loop (radius a), on the floor directly
below, carrying a current /, (Fig. 8.10). This time, just for a change, let’s assume
both currents are constant (we’ll include a regulated power supply in each loop').
Parallel currents attract, and we propose to lift the small loop off the floor, keeping
careful track of the work done and the agency responsible.

h

If}a

FIGURE 8.10

14This argument is essentially the same as the one in Ex. 5.3, except that in this case I told the story
in terms of motional emf, instead of the Lorentz force law. But after all, the flux rule is a consequence
of the Lorentz force law.

5The lower loop could be a single spinning electron, in which case quantum mechanics fixes its
angular momentum at /i/2. It might appear that this sustains the current, with no need for a power
supply. I will return to this point, but for now let’s just keep quantum mechanics out of it.
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Let’s start by adjusting the currents so the small ring just “floats,” a distance
h below the table, with the magnetic force exactly balancing the weight (m,g) of
the little ring. I’1l let you calculate the magnetic force (Prob. 8.11):
37 a’b’h

Fmag = —wolalp

) W =mgg. (839)

Now the loop rises an infinitesimal distance dz; the work done is equal to the gain
in its potential energy

AW, = mygde = Epor 1,y 8.40
g = Ma8 Z_TﬂOahm Z. (8.40)

Who did it? The magnetic field? No! The work was done by the power supply
that sustains the current in loop a (Ex. 5.3). As the loop rises, a motional emf is
induced in it. The flux through the loop is

q)a - MIba
where M is the mutual inductance of the two loops:

T Lo a’b?

M =
2 (bz + h2)3/2
(Prob. 7.22). The emf is
do, M dM dh
&= — =—lh——=—lh———
dt dt dh dt

3 2p? —d
— (2 TRy @ 2h( Z).
2 2 (b% + h?)5/2 dt

The work done by the power supply (fighting against this motional emf) is

3n a’b*h
dw, = —(C;a[a dt = Tltolalbm dz (8.41)
—same as the work done in lifting the loop (Eq. 8.40).
Meanwhile, however, a Faraday emf is induced in the upper loop, due to the
changing flux from the lower loop:

dM
b, =M1, = 5b = _Iaza
and the work done by the power supply in ring b (to sustain the current ) is
AWy = —& by dt = ot 1, —01 8.42
b—_bht—TMOahm Z, (8.42)

exactly the same as dW,. That’s embarrassing—the power supplies have done
twice as much work as was necessary to lift the junk car! Where did the “wasted”
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energy go? Answer: It increased the energy stored in the fields. The energy in a
system of two current-carrying loops is (see Prob. 8.12)

1 1
U= 5Lala2 + Ethg + MI,1I, (8.43)

SO
dM
dU - Ialb?dt - de

Remarkably, all four energy increments are the same. If we care to apportion
things this way, the power supply in loop a contributes the energy necessary to lift
the lower ring, while the power supply in loop b provides the extra energy for the
fields. If all we’re interested in is the work done to raise the ring, we can ignore
the upper loop (and the energy in the fields) altogether.

In both these models, the magnet itself was stationary. That’s like lifting a
paper clip by holding a magnet over it. But in the case of the magnetic crane, the
car stays in contact with the magnet, which is attached to a cable that lifts the
whole works. As a model, we might stick the upper loop in a big box, the lower
loop in a little box, and crank up the currents so the force of attraction is much
greater than m, g; the two boxes snap together, and we attach a string to the upper
box and pull up on it (Fig. 8.11).

The same old mechanism (Ex. 5.3) prevails: as the lower loop rises, the mag-
netic force tilts backwards; its vertical component lifts the loop, but its horizontal
component opposes the current, and no net work is done. This time, however, the
motional emf is perfectly balanced by the Faraday emf fighting to keep the current
going—the flux through the lower loop is not changing. (If you like, the flux is
increasing because the loop is moving upward, into a region of higher magnetic
field, but it is decreasing because the magnetic field of the upper loop—at any give
point in space—is decreasing as that loop moves up.) No power supply is needed
to sustain the current (and for that matter, no power supply is required in the upper
loop either, since the energy in the fields is not changing. Who did the work to lift
the car? The person pulling up on the rope, obviously. The role of the magnetic
field was merely to transmit this energy to the car, via the vertical component of
the magnetic force. But the magnetic field itself (as always) did no work.

FIGURE 8.11



378

Chapter 8 Conservation Laws

The fact that magnetic fields do no work follows directly from the Lorentz
force law, so if you think you have discovered an exception, you’re going to have
to explain why that law is incorrect. For example, if magnetic monopoles exist,
the force on a particle with electric charge g, and magnetic charge ¢g,, becomes
(Prob. 7.38):

F=¢q.(E+vxB)+g,B—-¢eunyvxE). (8.44)

In that case, magnetic fields can do work ...but only on magnetic charges. So
unless your car is made of monopoles (I don’t think so), this doesn’t solve the
problem.

A somewhat less radical possibility is that in addition to electric charges there
exist permanent point magnetic dipoles (electrons?), whose dipole moment m is
not associated with any electric current, but simply is. The Lorentz force law
acquires an extra term

F=¢qgqE+vxB)+V(@m-B).

The magnetic field can do work on these “intrinsic” dipoles (which experience
no motional or Faraday emf, since they enclose no flux). I don’t know whether a
consistent theory can be constructed in this way, but in any event it is not classical
electrodynamics, which is predicated on Ampere’s assumption that all magnetic
phenomena are due to electric charges in motion, and point magnetic dipoles must
be interpreted as the limits of tiny current loops.

Problem 8.11 Derive Eq. 8.39. [Hint: Treat the lower loop as a magnetic dipole.]

Problem 8.12 Derive Eq. 8.43. [Hint: Use the method of Section 7.2.4, building the
two currents up from zero to their final values.]

More Problems on Chapter 8

Problem 8.13'® A very long solenoid of radius a, with n turns per unit length,
carries a current /;. Coaxial with the solenoid, at radius b > a, is a circular ring of
wire, with resistance R. When the current in the solenoid is (gradually) decreased,
a current 7, is induced in the ring.

(a) Calculate I, in terms of d I, /dt.

(b) The power (IrzR) delivered to the ring must have come from the solenoid. Con-
firm this by calculating the Poynting vector just outside the solenoid (the elec-
tric field is due to the changing flux in the solenoid; the magnetic field is due
to the current in the ring). Integrate over the entire surface of the solenoid, and
check that you recover the correct total power.

16For extensive discussion, see M. A. Heald, Am. J. Phys. 56, 540 (1988).
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Problem 8.14 An infinitely long cylindrical tube, of radius a, moves at constant
speed v along its axis. It carries a net charge per unit length A, uniformly distributed
over its surface. Surrounding it, at radius b, is another cylinder, moving with the
same velocity but carrying the opposite charge (—A). Find:

(a) The energy per unit length stored in the fields.
(b) The momentum per unit length in the fields.

(c) The energy per unit time transported by the fields across a plane perpendicular
to the cylinders.

Problem 8.15 A point charge ¢ is located at the center of a toroidal coil of rectan-
gular cross section, inner radius a, outer radius a + w, and height A, which carries
a total of N tightly-wound turns and current /.

(a) Find the electromagnetic momentum p of this configuration, assuming that w
and & are both much less than a (so you can ignore the variation of the fields
over the cross section).

(b) Now the current in the toroid is turned off, quickly enough that the point charge
does not move appreciably as the magnetic field drops to zero. Show that the
impulse imparted to ¢ is equal to the momentum originally stored in the elec-
tromagnetic fields. [Hinz: You might want to refer to Prob. 7.19.]

Problem 8.16!7 A sphere of radius R carries a uniform polarization P and a uniform
magnetization M (not necessarily in the same direction). Find the electromagnetic
momentum of this configuration. [Answer: (4/9)m o R*(M x P)]

Problem 8.17'® Picture the electron as a uniformly charged spherical shell, with
charge e and radius R, spinning at angular velocity w.

(a) Calculate the total energy contained in the electromagnetic fields.
(b) Calculate the total angular momentum contained in the fields.

(c) According to the Einstein formula (E = mc?), the energy in the fields should
contribute to the mass of the electron. Lorentz and others speculated that the
entire mass of the electron might be accounted for in this way: Uy, = m,c?.
Suppose, moreover, that the electron’s spin angular momentum is entirely
attributable to the electromagnetic fields: L.y, = //2. On these two assump-
tions, determine the radius and angular velocity of the electron. What is their

product, w R? Does this classical model make sense?

Problem 8.18 Work out the formulas for u, S, g, and ? in the presence of
magnetic charge. [Hint: Start with the generalized Maxwell equations (7.44) and
Lorentz force law (Eq. 8.44), and follow the derivations in Sections 8.1.2, 8.2.2,
and 8.2.3.]

7For an interesting discussion and references, see R. H. Romer, Am. J. Phys. 63, 777 (1995).
18See J. Higbie, Am. J. Phys. 56, 378 (1988).
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Chapter 8 Conservation Laws

Problem 8.19' Suppose you had an electric charge g, and a magnetic monopole
¢n- The field of the electric charge is

_ 1 9
4y 22

(of course), and the field of the magnetic monopole is
= Ldn g
4 22
Find the total angular momentum stored in the fields, if the two charges are sepa-
rated by a distance d. [Answer: (1to/47)qeqm-1*°

Problem 8.20 Consider an ideal stationary magnetic dipole m in a static electric
field E. Show that the fields carry momentum

P = —¢opo(m x E). (8.45)

[Hint: There are several ways to do this. The simplest method is to start with
p =€ [(E x B)drt, write E = —VV, and use integration by parts to show that

pP= EQM()/ V]dr.

So far, this is valid for any localized static configuration. For a current confined
to an infinitesimal neighborhood of the origin we can approximate V (r) ~ V (0) —
E(0) - r. Treat the dipole as a current loop, and use Egs. 5.82 and 1.108.]*!

Problem 8.21 Because the cylinders in Ex. 8.4 are left rotating (at angular veloci-
ties w, and wy, say), there is actually a residual magnetic field, and hence angular
momentum in the fields, even after the current in the solenoid has been extinguished.
If the cylinders are heavy, this correction will be negligible, but it is interesting to
do the problem without making that assumption.??

(a) Calculate (in terms of w, and w,) the final angular momentum in the fields.
[Define @ = w Z, so w, and w, could be positive or negative.]

(b) As the cylinders begin to rotate, their changing magnetic field induces an extra
azimuthal electric field, which, in turn, will make an additional contribution to

9This system is known as Thomson’s dipole. See I. Adawi, Am. J. Phys. 44, 762 (1976) and Phys.
Rev. D31, 3301 (1985), and K. R. Brownstein, Am. J. Phys. 57, 420 (1989), for discussion and refer-
ences.

20Note that this result is independent of the separation distance d! It points from g. toward g,,. In
quantum mechanics, angular momentum comes in half-integer multiples of 7, so this result suggests
that if magnetic monopoles exist, electric and magnetic charge must be quantized: pog.qm /47 =
nh/2,forn =1,2,3,..., an idea first proposed by Dirac in 1931. If even one monopole is lurking
somewhere in the universe, this would “explain” why electric charge comes in discrete units. (How-
ever, see D. Singleton, Am. J. Phys. 66, 697 (1998) for a cautionary note.)

21 As it stands, Eq. 8.45 is valid only for ideal dipoles. But g is linear in B, and therefore, if E is held
fixed, obeys the superposition principle: For a collection of magnetic dipoles, the total momentum is
the (vector) sum of the momenta for each one separately. In particular, if E is uniform over a localized
steady current distribution, then Eq. 8.45 is valid for the whole thing, only now m is the fotal magnetic
dipole moment.

22This problem was suggested by Paul DeYoung.
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the torques. Find the resulting extra angular momentum, and compare it with
your result in (a). [Answer: —uo Q> wy,(b* — a*) /4wl 7]

Problem 8.22?° A point charge g is a distance @ > R from the axis of an infinite
solenoid (radius R, n turns per unit length, current /). Find the linear momen-
tum and the angular momentum (with respect to the origin) in the fields. (Put
q on the x axis, with the solenoid along z; treat the solenoid as a nonconduc-
tor, so you don’t need to worry about induced charges on its surface.) [Answer:
P = (rognIR*/2a) §; L = 0]

Problem 8.23

(a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using J ; in
place of J. Show that the Poynting vector becomes

S=E x H, (8.46)

and the rate of change of the energy density in the fields is
0 oD oB
_M = E J— + H - —_
ot ot ot

For linear media, show that**

u:%(E-D+B'H). (8.47)

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15,
with p; and J ; in place of p and J. Don’t bother to construct the Maxwell stress
tensor, but do show that the momentum density is®»

g =D x B. (8.48)

Problem 8.24

A circular disk of radius R and mass M carries n point charges (g), attached at
regular intervals around its rim. At time ¢ = O the disk lies in the xy plane, with its
center at the origin, and is rotating about the z axis with angular velocity w,, when
it is released. The disk is immersed in a (time-independent) external magnetic field

B(s,z) = k(—s8+227),
where k is a constant.

(a) Find the position of the center if the ring, z(¢), and its angular velocity, w(¢), as
functions of time. (Ignore gravity.)

(b) Describe the motion, and check that the total (kinetic) energy—translational
plus rotational—is constant, confirming that the magnetic force does no work.?

23See F. S. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994), and B. Y.-K. Hu,
Eur. J. Phys. 33, 873 (2012), for discussion of this and related problems.

24Refer to Sect. 4.4.3 for the meaning of “energy” in this context.

25For over 100 years there has been a raging debate (still not completely resolved) as to whether
the field momentum in polarizable/magnetizable media is Eq. 8.48 (Minkowski’s candidate) or €q o
(E x H) (Abraham’s). See D. J. Griffiths, Am. J. Phys. 80, 7 (2012).

%6This cute problem is due to K. T. McDonald, http:/puhepl.princeton.edu/mcdonald/examles/
disk.pdf (who draws a somewhat different conclusion).
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