APRIORI
ALGORITHM

Motivation: Association Rule Mining

* Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items In the transaction

Market-Basket transactions -
Example of Association Rules

TID Items

1 Bread, Milk EI[\)/IIi?IEeE:}re_a)d{}Bie%ggs,Coke},
2 Bread, Diaper, Beer, Eggs {Beer, Bread} — {Milk},

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Applications: Association Rule Mining

* = Maintenance Agreement

— What the store should do to boost Maintenance
Agreement sales

Home Electronics = *
— What other products should the store stocks up?

Attached mailing in direct marketing
Detecting “ping-ponging” of patients
Marketing and Sales Promotion
Supermarket shelf management

Definition: Frequent ltemset

e Jtemset

— A collection of one or more items
*Example: {Milk, Bread, Diaper}

— k-itemset
*An itemset that contains k items TID ltems
« Support count (o) 1 Bread, Milk
— Frequency of occurrence of an itemset 2 Bread, Diaper, Beer, Eggs
— E.g. o({Milk, Bread,Diaper}) = 2 3 Milk, Diaper, Beer, Coke
e Support 4 Bread, Milk, Diaper, Beer
— Fraction of transactions that contain an 5 Bread, Milk, Diaper, Coke
itemset

— E.g. s({Milk, Bread, Diaper}) = 2/5
 Frequent Itemset
— An itemset whose support is greater

Definition: Association Rule

« Association Rule TID Items

— An implication expression of the form 1 Bread, Milk
X =Y, where X and Y are itemsets 2 Bread, Diaper, Beer, Eggs
— Example: 3 Milk, Diaper, Beer, Coke
{Milk, Diaper} — {Beer} 4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
* Rule Evaluation Metrics
— Support (S) Example:
*Fraction of transactions that contain both NN P B3

XandyY

— Confidence (c)

*Measures how often items in Y
appear in transactions that
contain X

Association Rule Mining Task

« Given a set of transactions T, the goal of
association rule mining is to find all rules having

— support 2 minsup threshold
— confidence =2 minconf threshold

 Brute-force approach:
— List all possible association rules
— Compute the support and confidence for each rule

— Prune rules that fail the minsup and minconf
thresholds

Computational Complexity

« Given d unique items:
— Total number of itemsets = 2
— Total number of possible association rules:

w10t

2 ?SEd_kj
R=>r _ E

I@l_ = J)
———= 11

If d=6, R =602 rules

Number of rules

Mining Association Rules: Decoupling

Example of Rulcy

Bread, Milk

o e e | (Dl e (204,200
- - : —> =-V.4, C—=1.

Milk, Diaper, Beer, Coke | yiyianer, Beer} —» {Milk} (s=0.4, c=0.67)

Bread, Milk, Diaper, Beer | (Beer} — {Milk,Diaper} (s=0.4, c=0.67)

Bread, Milk, Diaper, Coke | tpigner} — {Milk,Beer} (s=0.4, c=0.5)

Observations: {Milk} — {Diaper,Beer} (s=0.4, c=0.5)

* All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

* Rules originating from the same itemset have identical support but
can have different confidence

ol | W N -

* Thus, we may decouple the support and confidence requirements

",\" " _

Mining Association Rules

 Two-step approach:

1. Frequent Itemset Generation
— Generate all itemsets whose support > minsup

2. Rule Generation

— Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

* Frequent itemset generation is still
computationally expensive

Freqguent ltemset Generation

* Brute-force approach:
— Each itemset Iin the lattice is a candidate frequent itemset

— Count the support of each candidate by scanning the

database _ _
Transactions List of

Candidates

ID |Items

Bread, Milk T
Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke M

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

- W >

g w[N[- o

!
i

— Match each transaction against every candidate

ekl

i

\

Reducing Number of Candidates: Apriori

 Apriori principle:
— If an itemset is frequent, then all of its subsets must also
be frequent

 Apriori principle holds due to the following property
of the support measure:

SRR

— Support of an itemset never exceeds the support of its
subsets

lllustrating Apriori Principle

Found to be
Infrequent

lllustrating Apriori Principle

ltem Count [[ltems (1-itemsets)
Bread 4
Y
Milk 4 T — Gt Rairs (2-itemsets)
Beer 3 {Beed MK 3
'aper BiECCs == FZINo need to generate
Bk {BedDigoa} 3 gandidates involving Coke
{MikBa=} Za0r Eggs)
{MIkDgoer} 3
— {Be, D} 3
Minimum Support = 3 _ _
\ Triplets (3-itemsets)
If every subset is considered, st caort
6C1 + 6C2 + 6C3 =41 {Beed MK [Dagoe} 3

With support-based pruning,
6+6+1=13

The Aprior1 Algorithm

C,: Candidate itemset of size k
L, : frequent itemset of size k

L; = {frequent items};
for (t=1; L, !=(J; #+t) do begin
., ; = candidates generated from 7,;
for each transaction ¢ in database do
increment the count of all candidates in
C,; that are contained in /
Ly.; = candidates in C, ; with min_support
end
return U, L,

The Aprion1 Algorithm -- Example
Database D item setjsup. s itemset|sup.
TID |tem s C; I 2 ! == >
100 1 3 4 {2} 3 (21 2
200 [2 35 ScanD 3y 3 (3} -
3001 235 {4} 3l (51 3
400 |2 5 (51 3
Colitem set|sup o itemset 3
L, Ueniseh ol R scanp | U2
3y | 2 AR ey {13}
(23} | 2 |«— |81 5; | 1 Y,
{2 5} 3 {2537} 2 {2 3}
{25} | 3 {25}
5] : {3 51} 2 {3 5}
Cslitemset| ScanD Lg|llemSetSUR] e (1,2,3)(1,2,5)
§2°:3.81 {235] 2 and {1,3,5} notin C,

Apriori: Reducing Number of Comparisons

« Candidate counting:

— Scan the database of transactions to determine the support of
each candidate itemset

— To reduce the number of comparisons, store the candidates in a
hash structure

* Instead of matching each transaction against every candidate, match
it against candidates contained in the hashed buckets

Transactions Hash Structure

ID |Items A
Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

=
T 1
2
3
4
5

Apriori: Implementation Using Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{145},{124},{457},{125},{458},{159},{136},{234},{567},{345}, {3
56}, {357},{689},{367}, {368}

You need:
* Hash function
* Max leaf size: max number of itemsets stored in a leaf node

(if number of candidate itemsets exceeds max leaf size, split the node)

Hash function 234
1,4/]ﬁ3’9 267
145 136
345 356 367

2,5,8
A 357 368

Apriori: Implementation Using Hash Tree

1+/{2356
12+(356 \
13+|56
15+|6 |
N\
145 IlBG“
124 125 159
457111458

12356

l

transaction

2 +

356

345

3+

56

4/

356

357

689

367

368

REFERENCES :

* Fast algorithms for mining association rules in large databases

http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf

